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Acoustic Characterization of a Hybrid Liner

Consisting of Porous Material by Using A Unified

Linearized Navier-Stokes Approach
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In this paper, the acoustic properties of a hybrid liner placed at the end of an impedance
tube are investigated using numerical simulations. The hybrid liner constitutes of three
components, a perforated plate, a porous layer and a rectangular back cavity. The presence
of the porous layer is to enhance the absorptive performance of a liner. The main objective
of the paper is to verify the proposed numerical methodology - a unified linearized Navier-
Stokes Equations (LNSE) approach. In the unified LNSE approach, the combination of
the Helmholtz Equation, LNSE as well as the equivalent fluid model are solved in different
regions of the impedance tube. To achieve this, the continuity of the coupling condition
between the LNSE and the Helmholtz equation is examined. Another objective is to
analyze the effectiveness of the porous material to the acoustic performance of the liner.
Acoustic liner simulations with and without porous material, porous material with different
flow resistivity are carried out. A good agreement is found between the numerical results
and the measurements previously performed at KTH MWL.1

Compared to previous work234 , several improvements have been made in the numerical
methodology, such as that the energy equation has been added in order to include the
damping due to viscous dissipation as well as the thermal dissipation in the vicinity of the
perforated plate.

I. Introduction

Fan noise in aero-engines can be effectively reduced through the installation of acoustic liners as wall
treatments in the inlet ducts. Due to the increasing demand of the noise reduction, development of liners
giving more absorption and working in a wider frequency range is an active area of research. Usually, single-
degree-of-freedom liners (SDOF) are sandwich panels with a basic configuration, consisting of a face-sheet
bonded to a honeycomb layer and closed by a back-skin. In this paper, the face-sheet is made by both a
perforated plate and a porous metallic foam. This type of the face-sheet made of the absorbing material is
expected to enhance the acoustic absorption of the liner. In the paper, a numerical methodology - the Unified
LNSE Approach is presented and the effectiveness of the porous material to the acoustic performance of the
liner is investigated numerically. Furthermore, the numerical results are compared with the measurements
performed at KTH MWL by Kabra et al.1

In the simulations presented in this paper, different regions of the impedance tube are modeled using
different equations. This is done in order to have as fast simulations as possible without scarifying the
accuracy of the results. The linearized Navier-Stokes equations in frequency domain (LNSE) is applied in
the vicinity of the perforated plate, while an equivalent fluid model is used in the porous metallic foam. The
Helmholtz equation is solved in the main duct and in the back cavity, see Fig. 1, where viscous effects are
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assumed to be negligible. The LNSE and the equivalent fluid model used in this paper are described in Secs
A–B. With different equations applied in different regions of the computational domain, coupling conditions
become necessary at the interfaces between the different equations. These coupling conditions are presented
in subsection C.

Figure 1. Schematic sketch of the numerical model of the impedance tube

In the experiments, the perforated plate is placed on the top of the cavities, while the metallic foam is
compressed into the perforated plate. In the numerical simulations, the perforated plate and the metallic foam
are two different layers. The differences of the liner between the numerical modelling and the experimental
test samples are illustrated in the Fig. 2. and a photo of the experimental test samples is provided as well
as Fig. 3.

Figure 2. The differences illustrated between the nu-
merical modelling and the experimental test samples.
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the plane wave scattering matrix of the lined section could be measured. Also here, the stepped sine excitation with a 
frequency step of 50Hz was used. 

In order to characterize the flow field, a Pitot tube and temperature sensor section was included upstream of the 
sample. Both the Pitot tube and temperature sensor were traversed over the height of the duct. This section was 
removed during the acoustic tests i.e. the temperature and the flow was measured at the position of sample holder in 
acoustic testing. In addition, a temperature sensor was traversed inside one of the liner sample cavities.  

In the high temperature test case the test duct was on the upstream side (left in Fig. 3) connected to four commercial 
hot air blowers and the downstream side was an open end. Surface heaters were used to increase the temperature and 
decrease temperature gradients. In the high flow speed configuration the upstream side (left in Fig. 3) was connected 
to a high capacity compressed air source in the CICERO lab at KTH. The downstream side was connected to a chimney 
leading to the outside. The test pipes were made from stainless steel with a square cross section 36x36 mm inside. 

The starting point for the liner sample development was the so-called SAAB hybrid liner24 studied in the EU 
project SILENCE(R). This liner had a perforate top sheet with 20% open area, thickness 0.65 mm, hole diameter 
0.75 mm in combination with a metallic foam and a cavity with depth of 19 mm. The perforate sheet and honeycomb 
cavities were made from Inconel 625 and the metallic foam was Nickel based. In the present study a modular liner 
test sample, see Figure 4, has been utilized consisting of a solid back plate, a cavity section with 4x8 rectangular cross 
section cavities with the inner dimensions of 6.9x6.9 mm, metallic foam layer and perforated top sheet. 

 

 
 

The back plate and two cavity sections with depts. of 19 and 10 mm were made from stainless steel. Three Nickel 
based foam layers had surface weights of 400, 600 and 800 g/m2. The perforates were made from Inconel and their 
specifications are summarized in Table 1. 
 

Table 1. Perforated plate specifications.  
 

Perforate 
name 

Hole diameter 
[mm] 

Plate thickness 
[mm] 

Number of 
holes/cell 

Percentage 
open area 

P1 0.75 0.6 23 16.3 
P2 1.50 0.6 6 17.0 
P3 1.50 0.6 9 25.5 
P4 1.50 1.2 9 25.5 
P5 1.50 1.2 6 17.0 

 
Measurements were made for a large number of test configurations. In the present paper only results obtained using 
perforate P1, with or without a metallic foam layer (surface density of 600 g/m2), and the 19 mm cavity were included.  
 

 
Figure 4. Photo of modular test sample. The geometrical parameters of perforated plates are given in 

Table 1. 
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Figure 3. Experimental test samples of the components
of the liner, left upper are the cavities, right upper are
the porous metallic foams, and lower are the perforated
plates.

II. Numerical Methodology - A Unified LNSE approach

In this section, we first present the three-dimensional Linearized Navier-Stokes equations (LNSE) in
frequency domain where the energy equation is also considered. Thereafter the “Unified LNSE approach”
which combines the LNSE with the equivalent fluid model and the Helmholtz equation, respectively, are
introduced. The proposed “Unified LNSE approach” is capable to model the sound attenuation in the
perforated plate, the sound propagation in the porous material and the tube and back cavity in a very
efficient way. We also present coupling conditions between the LNSE and Helmholtz equation. By achieving
the coupling between the LNSE and the Helmholtz equation, the LNSE can be switched to a Helmholtz
equation to reduce the computational cost in the regions where damping or absorbing effects can be considered
as negligible. For example, in the hybrid liner, the Helmholtz equation is solved in the main duct, in which
only plane waves are propagating without any losses. In this way, around one million degrees of freedom
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(DOF) out of 2 million in total are saved in the simulations.

A. Linearized Navier-Stokes equations in frequency domain

The full compressible Navier-Stokes equations in tensor form in a Cartesian coordinate system, with the
assumptions of ideal gas and constant specific heat capacity are:5

Dρ

Dt
+ ρ

∂ui
∂xi

= 0 (1)

ρ
Dui
Dt

= − ∂p

∂xi
+ µB

∂2uj
∂xi∂xj

+
∂τij
∂xj

+ ρFi (2)

where ρ is the density, p is the pressure, ui is the i component of the velocity in the Cartesian coordinates, µB

is the bulk viscosity, which is used to take into account the rotational and translational modes of molecular
motion from mutual thermodynamics equilibrium.6 Fi is the body force, τij is the shear strain rate tensor
defined as

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
(3)

where δij the Kronecker delta function, µ is the dynamic viscosity.
The energy equation for the fluid with constant specific heat capacity is

∂T

∂t
+ uj

∂T

∂xj
=

1

cpρ

(
∂p

∂t
+ uj

∂p

∂xj

)
+

φ

cpρ
+

1

cpρ

∂

∂xj

(
kth

∂T

∂xj

)
(4)

where T is the temperature, cp is the heat capacity at constant pressure, κth is the thermal conductivity and
φ is the dissipation of mechanical energy due to the shear viscosity and the fluid relaxation losses, which is
defined as:

φ = µ

[
∂ui
∂xj

∂ui
∂xj

+
∂uj
∂xi

∂ui
∂xj
−
(

2

3
− µB

µ

)(
∂ui
∂xi

)2
]

(5)

The energy equation is included to replace the isentropic relation previously used by Kierkegaard et al.2

The presence of the energy equation gives the possibility to include the effects of heat conduction as well
as energy losses in the acoustic boundary layer. The temperature perturbations in the vicinity of the small
holes within the perforated plate imply a small modification of the properties of the medium, which has
never been taken into account in previous studies2.4

In order to obtain the linearised Navier-Stokes equations in frequency domain, we linearize Eqs (1), (2)
and (4), around a steady state solution in time, but varying in space. Thereafter, the perturbed quantities
are assumed to have a harmonic time-dependence. Hence, any perturbed quantity q′ can be represented as
q′(x, ω, t) = Re{q̂(x)e−iωt}, where q̂ is a complex quantity and ω is the angular frequency. By setting u0 = 0
and ρ0 = const, the linearized continuity equation, linearized momentum equation and linearized energy
equation at quiescent medium arrive at7

−iωρ̂+ ρ0∇ · û = 0 (6)

−iωρ0û = −∇ ·
[
PI + µ(∇û + (∇û)T )−

(
2

3
µ− µB

)
(∇ · û)

]
(7)

−iω(ρ0CpT − T0α0p) = −∇ · (−κ∇T ) +Q (8)

where a hat ˆ indicates a perturbed quantity, a subscript zero indicates mean flow quantities, ρ is the density,
u is the velocity vector, F is a volume force, ω is the angular frequency and µ is the dynamic viscosity, κ
is the thermal conductivity, α0 is the coefficient of thermal expansion (isobaric), and Q is a possible heat
source;

Finally, the linearized equation of state relates the variations in pressure, temperature, and density

ρ = ρ0(βT p− α0T ) (9)

where βT is the isothermal compressibility.
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B. An equivalent fluid model

An equivalent fluid model is a common way to model sound propagation in porous materials. In an equivalent
fluid model the sound is assumed to propagate homogeneously in the medium under the exposure of a medium
specific damping. The sound propagation in the porous material is then described as a propagation in the
“fluid” with the damping properties.

An equivalent fluid model originates from a simple Helmholtz type equation. The effective change com-
pared to a pure Helmholtz equation is that the wave number is altered to take damping, such as viscous
losses, into account, i.e.

(∇2 + k2eq)p̂ = 0 (10)

where keq is the altered wavenumber that replaces the ordinary wavenumber k = ω/c. The Delany-Bazley
model8 is the most common equivalent fluid model, and is well validated and used in many industrial
applications. Here, the modified wavenumber relates to the original wavenumber as:

keq =
ω

c0
(1 + 0.0978X−0.700 − i0.189X−0.595) (11)

where

X =
ρ0f

σ
(12)

and the constants such as 0.0978, −0.700 and 0.189 are found from curve fitting of the experimental data.
The validity of the model is 10−2 < f/σ < −1. If the porosity φ is taken into account, we have:

X → X ′ =
ρ0f

σφ
(13)

where ρ0 and c0 are the density and speed of sound in the air as if no porous material, respectively, and σ
is the flow resistivity of the porous material. The unit of the flow resistivity is [σ] = 1Nm−4s, and typical
values are within the range 103 < σ < 105.

C. Coupling conditions

The LNSE (6)(7)(8) are written in terms of the density perturbation ρ̂, while the equivalent fluid model-
Helmholtz type equation is expressed in terms of pressure perturbation p̂. From the momentum equation,
we have:

−iωρ̂+ ρ0∇ · û = 0 (14)

By inserting Eq (14) into the left hand side of Eq. (7) and applying the Gauss theorem, the coupling
condition for the momentum equation is obtained as well, namely

−n ·
[
PI + µ(∇û + (∇u)T )−

(
2

3
µ− µB

)
(∇ · û)

]
= P · n (15)

Finally, the coupling condition for the energy equation is obtained by assuming that there is no heat flow
into or out of the interfaces, in another words, the flow is adiabatic.

−n · (−κ∇T ) = 0 (16)

By applying a coupling condition on the interface as the Eqs. (14)(15)(16), the density perturbation ρ̂ is
eliminated from the equation, meanwhile, the pressure and velocity perturbations can be ensured continuous.

III. Numerical setup

The computational domain used in the simulations are presented in Fig. 1. Plane waves are prescribed
at the upstream end of the impedance tube, where the sound excitation is from 1500Hz to 5500Hz yielding
that the maximum wavelength of the acoustic wave is 226.7mm and the minimum wavelength is 7.2mm.
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(a) Overview of the mesh for the impedance tube (b) The mesh shown in the vicinity of the perfo-
rated plate

Figure 4. Overview of the mesh and the mesh in the vicinity of the perforated plate.

The mesh used in simulations is an unstructured mesh with around 700 000 elements. An overview of
the mesh and the mesh in the vicinity of the perforated plate is shown in Fig. 4. A hybrid mesh mixed by
tetrahedrons in the cavity, a swept mesh in the straight duct and tetrahedrons with the boundary layer mesh
in the vicinity of the perforated plate is applied. With a grid element size 3mm in the main duct, there
are 7 elements per wavelength for the highest frequency. All the simulations were carried out in COMSOL
5.1, which is a commercial finite element method (FEM) solver. The quadratic shape function is used in
the simulations. When generating the mesh, a meshing technique for boundary layer adjustment is used,
therefore the thickness of the boundary layer is adjusted depending on different frequencies. By using this
technique, mesh which is able to resolve the acoustic boundary layer is produced.

IV. Validation of the continuity of the coupling conditions

In this section, the continuity of the coupling conditions between LNSE and Helmholtz equation, that is
the Eqs. (14)(15)(16) is evaluated numerically. A rectangular duct with constant cross section is used as a
test case. The numerical configuration of the test case is illustrated in the Fig. 5.

Figure 5. Schematic of the test case for the examination of the coupling conditions.

A plane wave applied at the upstream boundary, wave is first propagating through the LNSE region,
then the Helmholtz region, as well as the equivalent fluid region and the Helmholtz region again.

The numerical results of the acoustic pressure contour is plotted in Fig. 5 to show the continuity of the
pressure. The the pressure and the gradient of the pressure are given in Fig. 6 to show the continuity more
specifically. The pink line shows the quantity solved by the Helmholtz equation (or Helmholtz type equation,
since the equivalent fluid model is the Helmholtz equation with an alerted wave number) and the blue line
indicates the quantity from the LNSE. It can be observed that in Fig. 6 (a) the acoustic pressure obtained
by the Helmholtz equation and the LNSE is continuous without any gaps. In Fig. 6 (b), the gradient of the
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acoustic pressure illustrates the continuity of the acoustics pressure as well, since any discontinuity of the
acoustic pressure will reflect a jump at the discontinuous point in the gradient of the acoustic pressure.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
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(a) The line graphic of the acoustic pressure.
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(b) The line graphic of the gradient of the acoustic pressure.

Figure 6. The line graphics of the pressure and the gradient of the pressure along the duct are presented at
frequency f = 5500Hz.

V. Numerical Results

Figure 7. Three-dimensional acoustic pressure contour plot

Fig. 7 shows the three-dimensional acoustic pressure contour in the impedance tube together with the
interfaces between the LNSE and the Helmholtz equation.
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Figure 8. The isosurface of the acoustic pressure at frequency f = 5500Hz.

In Fig. 8, the isosurface of the acoustic pressure is plotted. It can be seen that away from the liner, the
plane wave is propagating in the duct. When the wave is approaching to the hybrid liner, the isosurface
are curved due to the dissipation in the acoustic boundary layer of the perforated plate. After the wave has
passed through the perforated plate, it goes through the porous metallic foam region resulting in a big drop
of the acoustic pressure.

(a) magnitude of velocity perturbation (b) magnitude of temperature perturbation

Figure 9. The contour plots for magnitude of velocity perturbation and the temperature perturbation in the
vicinity of the perforated plate at frequency f = 5500Hz.

In Fig. 9, the contour plots for the magnitude of velocity perturbation and the temperature perturbation
in the vicinity of the perforated plate are presented. The air in the necks is contracting and de-contracting,
meanwhile, the air in the back cavity is decompressing and compressing. The viscosity leads to an added-
mass effect for the air in the necks as well as the attenuation of the sound. Further, Fig. 9 shows the
temperature perturbation resolved by the linearized Navier-Stokes equations.

The plot of sound intensity indicates the acoustic energy flow as shown in Fig. 10. In the main duct
where the Helmholtz equation is solved, the acoustic energy remains constant since there is no damping
included in the simulations. However, when the wave is propagating in the LNSE numerical region, some
acoustic energy is dissipated, leading to the change of the sound intensity. Later, the wave is propagating
through the perforated plate with a much smaller cross section area. Therefore the sound intensity is higher
in the small holes. In the porous region, essential damping causes the reduction of the sound intensity. In
the Helmholtz cavity, the sound intensity takes the form of a vortex, since the acoustic energy is trapped in
the cavity. As a result, the principle of the Helmholtz cavity is clearly visualized.

A. Comparison with and without metallic foam

In Fig. 11, the numerical results and the experimental results are presented for the hybrid liner with and
without the porous metallic foam. The measurements are performed at KTH MWL by Ramio Kabral et
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Figure 10. The acoustic flow colored by the sound intensity at frequency f = 5500Hz.

al.1 A good agreement can be found between the numerical results and the experimental results, which
shows that the unified approach is reliable for the hybrid liner simulations. Further, both the numerical
and experimental results in Fig. 11 (a) show that with the metallic foam in the hybrid liner, the acoustic
performance is enhanced almost 20%. However, the porous metallic foam only influence the phase of the
reflection coefficient at frequencies lower than 3300Hz, while it doesnt influence the acoustic performance
too much at the higher frequencies.

Frequency [Hz]

1500 2000 2500 3000 3500 4000 4500 5000 5500

|R
|

0

0.2

0.4

0.6

0.8

1

1.2

Numerical without foam

Numerical withfoam flow resistivity=64312

Experiments at KTH without foam

Experiments at KTH with foam

without foam

with foam

(a) magnitude of reflection coefficient

Frequency [Hz]

1500 2000 2500 3000 3500 4000 4500 5000 5500

 R
 [
d
e
g
]

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

Numerical without foam

Numerical withfoam flow resistivity=64312

Experiments at KTH without foam

Experiments at KTH with foam

(b) phase of reflection coefficient

Figure 11. The magnitude (left) and phase (right) of the reflection coefficient as a function of frequency for
the hybrid liner with and without the metallic foam. The thickness of the perforated plate is tp = 1.2 mm. The
metallic is placed close to the perforated plate, the thickness of the porous material is tf = 1 mm, and the flow
resistivity is [σ] = 64312 Nm−4s. Both numerical and experimental results are included in the plot.

The flow resistivity is a crucial value which determines acoustic damping in the porous metallic foam.
The flow resistivity applied in the simulations in Fig. 11 is obtained from measurements. Uncertainties
in the measured flow resistivity can be one reason for the slight discrepancy between the numerical and
experimental results. Further, the porous metallic foam within the hybrid liner is very thin, around 1 mm
and was compressed a little bit into the cavity in the experimental sample of the liner. The deformation
of the metallic foam is not modelled in the numerical simulations. This may be another reason for the
discrepancies. The influence of the flow resistivity and the position of the porous material are therefore
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investigated below.

B. Comparison between unified approach and the Helmholtz Equation

The numerical results obtained by the unified approach with LNSE equation are compared with the numerical
results obtained from only the Helmholtz equation to show the influence of the acoustic dissipation in the
acoustic boundary layer. In Fig. 12, the reflection coefficient and the resistance for the two methods are
shown as the functions of frequency. The numerical results indicate that with the consideration of acoustic
dissipation, a 5% change for the magnitude of the reflection coefficient and for the resistance is found. The
comparison of the numerical results between the unified approach and the Helmholtz equation shows that
it’s necessary to take the acoustic dissipation into account in the further simulations. However, the acoustic
dissipation doesn’t make too much influence on the phase or reactance.

Frequency [Hz]

1500 2000 2500 3000 3500 4000 4500 5000 5500
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|

0.4

0.5

0.6

0.7

0.8
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1
Flow resistivity=64312
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Numerical Helmholtz

(a) magnitude of reflection coefficient
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-3.5
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-2.5
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-1.5

-1
Flow resistivity=64312

Numerical LNSE

Numerical Helmholtz

(b) phase of reflection coefficient
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(c) resistance of impedance
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a
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1.5

2

2.5
Flow resistivity=64312

Numerical LNSE

Numerical Helmholtz

(d) reactance of impedance

Figure 12. The magnitude (upper left), phase (upper right) of the reflection coefficient,the resistance (lower
left) and the reactance (lower right) as a function of frequency for the hybrid liner with the metallic foam.
The thickness of the perforated plate is tp = 1.2 mm, the thickness of the porous material is tf = 1 mm, and the
flow resistivity is [σ] = 64312 Nm−4s. Numerical results from the Unified approach and the numerical results
from only the Helmholtz equation are included in the plot.
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C. Comparison with different flow resistivity
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Figure 13. The magnitude (upper left), phase (upper right) of the reflection coefficient, resistance(lower
left) and reactance (lower right) as a function of frequency for the hybrid liner with the metallic foam. The
thickness of the perforated plate is tp = 1.2 mm, the thickness of the porous material is tf = 1 mm, and the flow
resistivity is varying as the figures show, such as [σ] = 4300 Nm−4s, [σ] = 15000 Nm−4s, [σ] = 33000 Nm−4s and
[σ] = 64312 Nm−4s. Numerical results for the acoustic hybrid liner with different flow resistivity are included
in the plot.

The numerical results presented in Fig. 13. show the sensitivity of flow resistivity to the acoustic performance
of the hybrid liner. Each flow resistivity, it stands for different material, e.g. [σ] = 4300 Nm−4s refers to
the glass fibre (G1), [σ] = 15000 Nm−4s refers to the mineral fibre (M2), [σ] = 33000 Nm−4s stands for
the mineral fibre (M2-40 mm) and the [σ] = 64312 Nm−4s stands for the material of the experimental
sample, a high density metallic foam. When the flow resistivity is increasing from the 4300 to 64312, the
magnitude of the reflection coefficient is reduced maximum around 30% at frequency ranges between 3000Hz
to 4000Hz. With the increasing flow resistivity for porous material, the hybrid liner always gives a better
acoustic performance. The liner with different design parameters, such as thickness of the perforated plate
and different porosity etc, has been simulated in the previous papers.9
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D. Comparison for the location of the porous metallic foam
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(d) reactance of impedance

Figure 14. The magnitude (upper left), phase (upper right) of the reflection coefficient, resistance(lower left)
and reactance (lower right) as a function of frequency for the hybrid liner with the metallic foam. The thickness
of the perforated plate is tp = 1.2 mm, the thickness of the porous material is tf = 1 mm, and the flow resistivity
is [σ] = 64312 Nm−4s. In one numerical case, the metallic foam is placed 1mm from the perforated plate, in
another numerical case, the metallic foam is placed next to the perforated plate.

Fig. 14 shows the reflection coefficient and the impedance of the hybrid liner when the metallic foam is
placed at different locations. In one case the metallic foam is placed 1mm from the perforated plate, while
in another case the metallic foam is placed next to the perforated plate. In Fig. 14 (a) and (c), the acoustic
performance changes around 10% between 3000Hz and 5500Hz for these two different numerical cases. The
numerical results show that when the porous metallic foam is placed a little bit away from the perforated
plate, the absorption will increase, on the contrary, when the metallic foam is placed next to the perforated
plate resulting in less absorption. This may due to some contraction and expansion at the end of the small
holes in the perforated plate, and hence the installation of the metallic foam close to the perforated plate
will have a large influence.

Conclusion

In this paper, we present the numerical methodology - the unified approach in frequency domain to
predict the acoustic performance of a hybrid liner, which is made of a perforated plate, a metallic foam and
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a rectangular back cavity. The coupling conditions to connect the LNSE and the Helmholtz equation are
validated.

Acoustic performances for the hybrid liner with and without the porous metallic foam, with different
flow resistivity and with the porous foam at different locations are obtained from the simulations. All the
numerical results are compared with the measurements performed at KTH MWL. It can be observed that the
numerical results are in good agreement with the results from the measurements. Generally, the inclusion of
the porous metallic foam is an effective way to enhance the absorption of the acoustic liners. In particular,
the placement of the metallic foam has a rather large influence on the performance of the hybrid liner.
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