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ANALYSIS OF FLAME-INTRINSIC INSTABILITY IN A RESO-
NATOR 
Nalini Mukherjee, Maria Heckl and Victor Shrira 
Faculty of Natural Sciences, Keele University, Staffordshire ST5 5BG, UK 

This study is aimed at understanding the recently discovered phenomenon of flame-intrinsic 
modes inside an acoustic resonator in the context of thermoacoustic instabilities in a combustion 
chamber. Earlier studies have shown the existence of intrinsic thermoacoustic modes, which are 
qualitatively different from the well-known acoustic modes.  The analytical results were limited 
to intrinsic modes in an infinite system. Here we examine properties of intrinsic thermoacoustic 
modes within the framework of a one-dimensional resonator containing a heat source modelled 
by the linear nτ -law. In the limit of small values of the interaction index n , we find an explicit 
dispersion relation for the intrinsic modes: there is always infinite number of these modes and 
for small n these modes are heavily damped. To leading order, the frequencies of these modes 
depend neither on the properties of the resonator nor on the position of the flame. Numerical 
analysis of the system for larger values of n shows that with the increase of n the real part of the 
frequency for each intrinsic mode changes very slightly and this small frequency shift depends 
both on the properties of the resonator and position of the flame; the decay rate sharply decreas-
es with n and for sufficiently large n , the mode becomes unstable. 

 

1. Introduction 
The development of low-emission combustion systems is a high priority for environmental rea-

sons. This is achieved with a technology that is based on lean premixed combustion. However, such 
combustion systems are particularly susceptible to thermoacoustic instabilities, i.e. high-amplitude 
pressure oscillations that may cause serious hardware damage. This phenomenon has received a lot 
of attention from researchers worldwide (see e.g. [1]). Until recently, the conventional wisdom was 
that thermoacoustic instabilities are caused by a complex interplay between various physical pro-
cesses, the two key ones being: 
(1)  A flame with an unsteady heat release rate acts like an acoustic monopole source, generating 

acoustic waves (driving process) 
(2)  Acoustic waves in a combustion chamber are reflected at its boundaries, return to the flame and 

perturb its heat release rate (feedback process). 
The feedback between these processes may lead to an oscillation with growing amplitude and with 
a frequency that is typically close to one of the eigenfrequencies of the combustion chamber.  

However, very recent studies have shown that there is an alternative feedback loop leading to the 
generation of the so-called intrinsic thermoacoustic (ITA) instabilities, which can occur even if the 
feedback process mentioned above is missing.    

Hoeijmakers et al [2] demonstrated experimentally that ITA modes do exist. In a subsequent ana-
lytical study [3], they derived the dispersion relation for the frequencies of the intrinsic modes in an 
idealised setup with the following features: 1-D tube with non-reflecting ends, flame described by 
the nτ -model, piecewise constant temperature distribution in the tube with a jump at the flame from 

1T  (cold) to 2T  (hot). They solved the dispersion relation and found the complex frequency values 
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where i  is the imaginary unit, 2 1 1T Tθ = −  is the temperature jump, and 1 1 2 2( ) / ( )c cε = ρ ρ  is the 
jump in specific acoustic impedance across the flame. The integer m  is the mode number.  

Bomberg et al [4] gave a physical explanation how ITA modes are generated. The underlying 
mechanism is again a feedback loop:  A velocity disturbance travelling upstream towards the flame 
modulates the heat release rate, which in turn generates an acoustic wave; the upstream-travelling 
part of this wave influences the velocity and thus closes the feedback loop. In a companion study by 
Emmert et al [5], the stability of intrinsic modes is investigated from the viewpoint of a balance of 
the acoustic energy across the flame.  

Detailed numerical studies (Courtine et al [6], Silva et al [7]), where a flame placed in an acous-
tically anechoic environment is modelled by direct numerical simulation (DNS),  have since then 
shown that the ITA feedback proposed in [4] is a genuine physical phenomenon, and not just a spu-
rious by-product of simplistic network models.  

The aim of our paper is to investigate ITA modes of a flame situated in an acoustic resonator, ra-
ther than in an anechoic environment as in previous studies. Our approach is largely analytical.  

2. Mathematical model 
We consider the idealised combustion system sketched in figure 1. Effectively, this is a quarter-

wave resonator with a closed end at 0x =  and an open end at x L= . There is a dump plane at 
qx x= , where the cross-sectional area jumps from 1S  to 2S . The flame is compact and situated at 

qx . Also at qx , there is a jump in mean temperature from 1T  (cold) to 2T  (hot), and a correspond-

ing jump in mean density from 1ρ  to 2ρ , and in speed of sound from 1c  to 2c .  
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Schematic of the combustion system under consideration. 
 
The acoustic pressure and velocity are denoted by 'p  and 'u  respectively, and can be written as 

  1 1i i
1 1 1' ( ) e ek x k xp x A B −= + ,  1 1i i

1 1 1
1 1

1' ( ) e ek x k xu x A B
c

− = − ρ
,            (2a,b) 

  2 2i i
2 2 2' ( ) e ek x k xp x A B −= + ,  2 2i i

2 2 2
2 2

1' ( ) e ek x k xu x A B
c

− = − ρ
 ,           (3a,b) 

where the time dependence ie− ωt  has been omitted. 1 1/k c= ω  and 2 2/k c= ω  are wave num-
bers. 1A  and 2A  are pressure amplitudes of downstream-travelling waves, and 1B  and 2B  of up-
stream-travelling waves. They are related by the following boundary conditions: 
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A compact flame with unsteady rate of heat release 'Q  acts like a monopole-type sound source 
[8]: the pressure across it is continuous (momentum conservation), 

1 2' ( ) ' ( )q qp x p x= ,           (5) 

and the volume flow across the flame jumps by 2
1( 1) / 'γ − c Q , i.e. by the volume outflow from the 

source region (mass conservation), 

      1 1 1 2 2 2 2
1

1' ( ) ' ( ) 'q qS u x S u x Q
c
γ −

ρ − ρ = − ;          (6) 

γ  is the specific heat ratio.  
We model the flame by a simple linear time-lag law [9], 

           1 1 1'( ) '( , )
1

ρ
= − τ

γ − q
S cQ t n u x t ,           (7) 

where n  is the interaction index, and τ  is the time-lag. In the frequency domain, this has the form 

         i1 1 1ˆ ˆ( ) e '( , )
1

ωτρ
ω = ω

γ − q
S cQ n u x .           (8) 

The two conservation eqs. (5) and (6) can be written in terms of the pressure amplitudes 
1 2 1 2, , ,A A B B  by substituting with eqs. (2) and (3). Together with (4a,b), this yields 4 homogene-

ous equations for the 4 amplitudes: 

1 1 2 2

1 1 2 2

2 2

1i i i i
1

i i i ii i 22 1 1 2 2 1 1 2
i i 2

1 1 0 0 0
e e e e 0
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00 0 e e

q q q q

q q q q

k x k x k x k x

k x k x k x k x

k L k L
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An n S S c c S S c c
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− −ωτ ωτ

−

−          − −     =      + − − −          

(9) 

                    
The determinant of the 4 4×  matrix has to be zero, and this generates the dispersion relation 
 

2 1 1 2 2 1( ) [( / )( / ) 1]cos[ ( ) ]q qf S S c c k L x k xω = + − + +  

     i
2 1 1 2 2 1 1 2[( / )( / ) 1]cos[ ( ) ] 2 e sin sin[ ( )] 0q q q qS S c c k L x k x n k x k L xωτ+ − − − − − = ;          (10) 

we call ( )ωf  the characteristic function. 
For the special case, where the cross-section and mean temperature are uniform ( 1 2=S S , 

1 2=T T ), the wave numbers are identical, 1 2= =k k k , and the dispersion relation (10) reduces to 

    icos e sin sin[ ( )] 0q qkL n kx k L xωτ− − = .        (11) 

For a flame located exactly halfway along the tube ( / 2=qx L ), this reduces further to 

      
i

i
ecos

2 e

ωτ

ωτ=
+

nkL .         (12) 

The solution of the dispersion relation gives the frequencies ω  of all modes. These frequencies 
are generally complex; the real part gives the oscillation frequency of the mode, and the imaginary 
part gives the growth rate. 
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3. Analytical expression for the intrinsic modes 
We now try to find the roots of the dispersion relation analytically by turning to eq. (12). For 

very small values of n , this equation has two sets of roots: 
(1)  the conventional acoustic modes, described by cos 0=kL , 

(2)  a new set of modes, for which ie ωτ  is very large, i.e. the imaginary part of ω  is highly nega-
tive; this represents strongly damped modes. We explain this with a simple order-of-magnitude 
analysis: For a damped mode, the modulus of the denominator in (12) exceeds 2, hence for 
nonzero cos kL , there is only one possibility for (12) to have solutions: the numerator ien ωτ  
has to be (1)O . This implies that when n  is small, ie ωτ  has to be large.    

 
In order to examine these new modes further, we express the functions cos and sin in eq. (10) by 

using Euler's formula, 
   i icos (e e ) / 2α − αα = + ,   i isin (e e ) / (2i)α − αα = − .           (13a,b) 

This leads to  
2 1 2 1i[ ( ) ] i[ ( ) ]

2 1 1 2[( / )( / ) 1](e e )q q q qk L x k x k L x k xS S c c − + − − ++ +  
2 1 2 1i[ ( ) ] i[ ( ) ]

2 1 1 2[( / )( / ) 1](e e )q q q qk L x k x k L x k xS S c c − − − − −+ − +  
1 1 2 2i i i ( ) i ( )ie (e e )(e e ) 0q q q qk x k x k L x k L xn − − − −ωτ+ − − = .       (14) 

We then divide both sides of this equation by the expression 2 1 2i[( ) ]e − +qk k x k L  and obtain 
2 12i[( ( ) ]

2 1 1 2[( / )( / ) 1](1 e 1)q qk L x k xS S c c − − ++ + + +  
1 22i 2i ( )

2 1 1 2[( / )( / ) 1](e e )q qk x k L xS S c c − − −+ − +  
2 1 2 12i ( ) 2i 2i[ ( ) ]ie (1 e e +e ) 0q q q qk L x k x k L x k xn − − − − − +ωτ+ − − = .      (15) 

For the new set of modes, the imaginary part of ω , and hence also of the wave numbers 1 2,k k  is 
highly negative. The exponential expressions containing 1k  or 2k   in (15) are therefore much small-
er than 1, and can be neglected. This leaves 

i
2 1 1 2[( / )( / ) 1] e 0ωτ+ + =S S c c n .        (16) 

This has explicit analytical solutions, 
2 1 1 2( / )( / ) 11 1(2 1) i lnm

S S c cm
n

+
ω = + π−

τ τ
,        (17) 

where 0, 1, 2, . . .= ± ±m  is an integer, which represents the mode number. This expression is identi-
cal with equation (1), which gives the expression found by [3] for an τn -flame in an infinitely long 
tube. The real part of the frequencies depends linearly on the mode number, it depends inversely on 
the time-lag τ , but it is independent on the interaction index n  (in the adopted limit of small n ). 
The imaginary part is the same for all mode numbers, and it depends inversely on the time-lag and 
logarithmically on the interaction index. The complex frequencies given by (17) do not depend on 
the flame position, nor on the tube length.  

4. Numerical analysis for the intrinsic and acoustic modes 
In this section, we determine the complex eigenfrequencies for both types of modes (acoustic 

and intrinsic) by considering the full dispersion relation (10), and solving it numerically. The com-
bustion system has the following properties: 0.75m=L  (total tube length), / 2qx L=  (flame posi-

tion), 1 2 297K= =T T  (room temperature throughout), 1 2 345m/s= =c c  (speed of sound), and 
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3
1 2 1.2kg/mρ = ρ =  (mean density). These represent the properties of the laminar V-flame test rig at 

IIT Madras [10].  

4.1 Dependence of the modal frequencies on time-lag and interaction index 
Figure 2 shows the dependence of the modal frequencies (real part) on the time-lag for the range 
1. . . 5 msτ =  for three specific n -values ( 0, 0.25 , 1=n ); figure 3 shows the dependence on the 

interaction index for the range 0, . . . 1.5=n  for the specific time-lag 5msτ = , and for two tube 
lengths ( 0.75m=L  and 0.38m=L ). The frequency range shown in both figures is  0 . . .  1000Hz.  
The acoustic modes are marked by blue squares, and the intrinsic modes by red/pink circles. Also 
shown (red curve) is the analytical solution for the intrinsic modes given by the real part of eq. (17). 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
           
 

Figure 2: Modal frequencies vs. τ  ( 0, 0.25 , 1=n ).          Figure 3: Modal frequencies vs. n  ( 5 msτ = ). 
 

As expected, the acoustic modes have frequencies close to those of a quarter-wave resonator, 
( 0 0 0, 3 , 5 , . . .f f f , where 0f  is the fundamental frequency), and they are not affected much by 
changes in τ  or n . The intrinsic modes show a strong dependence on the time-lag (see figure 2): 
their frequencies decay with increasing time-lag. The decay closely follows the analytical curve, 
which is a 1/ τ  hyperbola. The dependence of the modal frequency on the interaction index is weak 
for all modes (see figure 3). Again, the analytical (red) curve is a good approximation for the nu-
merical results. Figure 3 also shows the effect of changing the tube length. The acoustic modes 
show a strong response to this (halving the tube length doubles their frequencies), but the intrinsic 
modes are barely affected (in most cases the pink and red circles coincide and cannot be distin-
guished).  

4.2 Stability behaviour of the intrinsic and acoustic modes 
In this section, we illustrate the behaviour of the acoustic and intrinsic modes by contour plots in 

the complex frequency plane. Curves depicting constant values of | ( ) |f ω , where ( )f ω  is given by 
eq. (10) will be shown. The modal frequencies are situated at points where | ( ) | 0f ω = . These are 
surrounded by closed loops, where | ( ) |f ω  has values close to zero.  

Figure 4 shows such a plot for a small n  value and medium time-lag: 0.025n = , 3msτ = . For 
reasons of scale, this plot has been split into two sections. The acoustic modes (marked by little blue 
squares) all have growth rates around 0 and are shown in the top-section of the plot. The intrinsic 
modes (marked by little green squares) have highly negative growth rates, between 11400 s−−  and 

11500 s−− , and they are shown in the bottom section.  
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Figure 4: Contour plot of | ( ) |f ω  in the complex frequency plane for 0.025n = , 3 msτ = .The two sections 
are parts of the same contour plot. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Contour plot of | ( ) |f ω  in the complex frequency plane for 1n = , 3 msτ = . 
 
We illustrate the effect of increasing the interaction index n  by figure 5, which shows the con-

tour plot of | ( ) |f ω  for 1n = , 3msτ = . The increase in n  has a strong effect on the intrinsic modes 
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in that their growth rate increases dramatically. The lowest intrinsic mode (which has a frequency of 
around 1000s-1) has even changed the sign of its growth rate and become unstable. Further numeri-
cal studies (not shown here) show that there is a threshold value on n  above which mode any mode 
becomes unstable. 

Figure 6 shows the effect of increasing the time-lag to 5 msτ = , leaving the interaction index as 
in the previous figure. The intrinsic modes undergo a drop in the modal frequency.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Contour plot of | ( ) |f ω  in the complex frequency plane for 1n = , 5 msτ = . 

4.3 Effect of area expansion and temperature jump  
The effect of other parameters, such as the area expansion 2 1/S S  or the temperature jump across the 
flame, can be investigated in the same way. We do this here for the area expansion. Figure 7 shows the 
case 2 1/ 1.5S S = ; the parameters n  and τ  are the same as in figure 6 to allow comparison. We ob-
serve that the intrinsic modes have become more stable; this is in line with [6], where the same effect 
is observed with DNS.  
 
 
 
 

 
 

 
 
 
 
 
 
 
 

Figure 7: Contour plot of | ( ) |f ω  for area expansion 2 1/ 1.5S S =  ( 1n = , 5 msτ = ). 
 
We have also investigated the effect of a jump in mean temperature by increasing 2T , while leav-

ing 1T  at room temperature. Our results (not shown here) indicate that the jump has a destabilising 
effect on the intrinsic modes. 
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5. Conclusions  
We summarise our main advance in understanding intrinsic thermoacoustic modes in resonators 

as follows:  
(i)  For any nonzero n and τ  there is always an infinite set of intrinsic modes.  
(ii)  For small n , we derived an explicit dispersion relation (16) for the intrinsic modes to leading 

order; this dispersion relation is identical with that found for an anechoic situation. The solu-
tions of this dispersion relation, i.e. the complex eigenfrequencies of the intrinsic modes, have a 
highly negative imaginary part, and a real part given by (2 1) /m + π τ , i.e. these are strongly 
damped, and their modal frequency depends strongly on the time-lag.  

(iii) By solving the dispersion relation numerically, we showed that an increase in n  has little effect 
on the modal frequencies (the frequency shift does not exceed 5%), but it leads to a strong in-
crease of the growth rate.    

(iv) The small frequency shift and the threshold value of n  do depend on characteristics of the res-
onator and on the flame position; at present we find them by solving the eigenvalue problem 
numerically. 

Our analysis is limited to situations where the intrinsic and acoustic modes are well-separated.  
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