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The aim of present work is to develop a method to determine the heat release law in the time-
domain, from the measured/simulated Flame Transfer Function (FTF) in the frequency-domain.
The present work is an extension of the famous nτ - law for heat release rate fluctuations. The
heat release law is assumed to have a time-lag (τ ) distribution, where the coupling coefficients (n)
themselves depend on the time-lag distribution in a piecewise constant manner. The flame transfer
function of the heat release law in the frequency-domain is obtained from Fourier transformation
of its time-domain representation. The coupling coefficients (n) are evaluated using Mean Square
Error (MSE) minimisation method, by comparing the modelled Flame Transfer Function with
experimental/simulated data. In our study, we use the Flame Transfer Function for conical and
V-flames, developed by Schuller et al. (Combustion and Flame, 134(1-2), 21-34, 2003).

1. Introduction

In order to reduce pollution of the environment by combustion exhaust gases, power generation
systems operate with lean premixed flames. However, such systems are susceptible to thermoacoustic
instabilities, which are high-amplitude oscillations caused by the feedback between oscillations in
pressure and in heat release rate, and which can cause major hardware damage.

The relationship between the heat release rate and the acoustic field is a crucial element in mod-
elling thermoacoustic instabilities. This relationship is commonly described by the flame transfer
function (FTF), which is a frequency–domain quantity. We use the following notation: Q′

(t) is the
fluctuation of the heat release rate in the time–domain, Q̂(ω) is its frequency–domain equivalent
(Fourier transform), and Q̄ is the mean rate of heat release; the same notation is used for the acoustic
velocity, v. The FTF is the ratio of (non-dimensional) heat release rate, Q̂(ω)/Q̄, of the flame, to
(non-dimensional) velocity fluctuations, v̂(ω)/v̄, at a reference position upstream of the flame.

A simple time–lag law for the heat release rate, with a time delayed term and an instantaneous
term in acoustic velocity was developed for a matrix burner flame, by Heckl [1, 2, 3]. Even though
the model captured the relevant features of the transfer function, the low pass behaviour of the FTF
was not predicted. Nevertheless, their model predicted the stability maps of the burner in line with
the measured stability maps. Blumenthal et al. [4] and Subramanian et al. [5] have examined the
linear response of premixed flames using discrete time–lag and impulse response (IR) functions.
Computational fluid dynamics (CFD) and system identification were combined to characterise the
dynamic response of systems in [6]. The systems were treated as black boxes and an IR functions
approach was employed to study a swirl burner.

In this paper, we propose a new method to convert a given FTF into a heat release law in the
time–domain. The underlying idea is based on a simple physical observation: flow perturbations
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travelling from a reference position to the flame do not all cover the same distance with the same
velocity, and therefore they arrive at the flame with a distribution of time–lags. Our method will give
the heat release law in terms of a small number of parameters, and this is well–suited for analytical
modelling of thermoacoustic instabilities.

We explain the method in section 2 and apply it to some basic test cases in section 3. This
application will not only validate our method, but provide better physical insight into the behaviour
of laminar flames (conical flames, V-flames) studied by Schuller et al. [7].

2. Heat release law with distributed time–lag

The generalised heat release law with a distributed time–lag is assumed to be of the form

Q
′
(t)

Q̄
=

1

τmax

τmax∫
0

n(τ)
v

′
(t− τ)

v̄
dτ, (1)

where τ is the time–lag and n is the coupling coefficient, which is a real number. τmax is a time scale
associated with the physical process being investigated. We divide the integration range [0, τmax] into
k intervals of length ∆τ and assume that the coupling constant n is uniform in each interval, for
example: n(τ) = n1 for τ ∈ [0,∆τ ], n(τ) = n2 for τ ∈ [∆τ, 2∆τ ], etc. In other words, we treat n(τ)
as a piecewise constant function. We can then split integral in Eq. (1) into a sum of k integrals and
write

Q
′
(t)

Q̄
=

1

τmax

n1

∆τ∫
0

v
′
(t− τ)

v̄
dτ + n2

2∆τ∫
∆τ

v
′
(t− τ)

v̄
dτ + · · ·+ nk

k∆τ∫
(k−1)∆τ

v
′
(t− τ)

v̄
dτ

 . (2)

The flame transfer function (FTF) in the frequency domain, defined as T (ω) = Q̂(ω)

Q̄
/ v̂(ω)

v̄
, is

obtained by taking the Fourier transform of Eq. (2).

Q̂(ω)

Q̄
=

{
1

τmax
e−iω

∆τ
2

2

ω
sin(ω∆τ

2
)
[
n1e

iω∆τ + n2e
2iω∆τ + · · ·+ nke

kiω∆τ
]} v̂(ω)

v̄
. (3)

∴ Tk(ω) =
1

τmax
e−iω

∆τ
2

2

ω
sin(ω∆τ

2
)
[
n1e

iω∆τ + n2e
2iω∆τ + · · ·+ nke

kiω∆τ
]
. (4)

Typically, T (ω) is obtained from experiments or simulations. In order to describe the heat release
law in the time–domain, we require the coupling coefficients, n1, n2, · · · , nk. They are evaluated
by minimising the mean square error (MSE) between the modelled Tk(ω) (Eq. (4)) and the mea-
sured T (ω) from experiments or simulations. The MSE in the frequency range [0, ωmax] is given by
εk =

∫ ωmax
0

[T (ω)− Tk(ω)]2dω. Minimising the MSE gives a matrix equation in n1, n2, · · · , nk. The
solution of this matrix equation give the values of n1, n2, · · · , nk. The value of τmax and the number
of equal divisions k (or the value of ∆τ ) is selected according to inherent physical features of the
problem studied.

3. Application to specific flames

The heat release law with distributed time–lag described in section 2 can be applied to any flame
with a known FTF in the frequency domain. In the present work, the distributed time–lag model for
heat release has been applied to two specific flames : Conical and V-flames (Fig. 1). Even though these
flames are simple and basic, they help us in demonstrating the usability of our method in explaining
the physical processes involved. This allows for the extension of the present method to other practical
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flames we encounter. The two flames are subjected to two different perturbations, namely uniform
velocity perturbation and axial convective velocity perturbation. Analytical expressions as well as
numerical simulations for the FTFs of conical and V-flames under different velocity perturbations
are given in Schuller et al.[7]. We make use of these analytical expressions to estimate the coupling
coefficients of our modelled FTF. The flame is anchored at the burner rim for a conical flame and
at the central rod for a V–flame. This corresponds to a zero displacement boundary condition at the
flame base [7].
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Figure 1: Schematic of different flame shapes

3.1 Conical flames

Conical flames are formed when the flame anchors on the rim of a circular burner duct (Fig. 1(a)).
The flame front is the location where the laminar flame velocity (SL) balances with the flame-normal
component of the velocity of fuel-air mixture through the duct (v̄). For any particular fuel-air mixture,
SL is taken as a constant. Therefore, given v̄, we can find the flame angle α = sin−1(SL/v̄).

3.1.1 Uniform velocity perturbation

The analytical expression for the FTF of a uniformly perturbed flame is [7]

T (ω)UCO =
2

ω2
∗

[1− exp(iω∗) + iω∗] , (5)

where, ω∗ = (ωR)/(SL cosα). (6)
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Figure 2: Variation of Gain and Phase of the FTF as a function of ω∗ and the distribution of n for
uniformly perturbed conical flame (α = 20◦). The – – line in (c) connects the midpoints of all the
piecewise constant n values.

The reduced frequency ω∗, is a dimensionless parameter, R is the radius of the burner duct
(Fig. 1(a)) and ω is the frequency of the perturbation. The gain and phase of the FTF (analytical)
are shown as solid black lines in Fig. 2 (a,b). The conditions assumed are : SL = 0.39m/s, α = 20◦,
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R = 11 mm, n = {n1, n2 . . . . . . n16}, ∆τ = τmax/16. We then evaluated the coupling coefficients
for the FTF in Eq. (5). The corresponding modelled FTF (green dots) as well as the resulting n distri-
bution are shown in Fig. 2 (a,b) and Fig. 2 (c), respectively. We can define a perturbation time scale
as τpert = (R/ sinα)/(v̄ cosα) = R/(SL cosα), which is the time taken for a perturbation to travel
from the root to the tip of the flame, along the flame front with a velocity v̄ cosα. In our study, we
have taken τmax = τpert = R/(SL cosα). This is taken as the characteristic time scale of the flame
and is applicable to all the flames considered in the present work.

3.1.2 Axial convective velocity perturbation

For axially convected perturbation, we use [7]

T (ω)CCO =
2

ω2
∗

1

1− cos2 α

[
1− exp(iω∗) +

exp(iω∗ cos2 α)− 1

cos2 α

]
. (7)

Here, the FTF depends on both reduced frequency, ω∗ and flame angle, α. Figure 3 (a,b) show the
analytical (black line) and modelled FTF (green dots) for a small flame angle, α = 20◦ and Fig. 3 (c)
shows the corresponding n distribution. Figure 4 shows the same for a larger flame angle, α = 80◦.
From these two results it can be observed that the distribution of n is significantly different from what
we observed in the uniformly perturbed case. The peak value of n occurs at larger τ value for small
flame angle, and the peak shifts to smaller τ with increasing flame angles. The distribution of n tends
to that of uniformly perturbed case for α close to 90◦. This behaviour will be explained in detail in
section 4.
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Figure 3: Variation of Gain and Phase of the FTF as a function of ω∗ and the distribution of n for
conical flame with axial convective perturbation and α = 20◦. The – – line in (c) connects the
midpoints of all the piecewise constant n values.
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Figure 4: Variation of Gain and Phase of the FTF as a function of ω∗ and the distribution of n for
conical flame with axial convective perturbation and α = 80◦. The – – line in (c) connects the
midpoints of all the piecewise constant n values.
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3.2 V–flames

V-flames are formed when the flame anchors on a rod concentric to a circular burner duct (Fig. 1(b)).
We use the same notations for the flame angle α and other parameters as in conical flame, since the
geometries are similar except of the locations of the burner axes or the lines of symmetry.

3.2.1 Uniform velocity perturbation

The analytical expression for the FTF of a uniformly perturbed V-flame is [7]

T (ω)UV R =
2

ω2
∗

[
b− a
b+ a

(exp(iω∗)− 1) + iω∗

(
a

b+ a
− b

b+ a
exp(iω∗)

)]
, (8)

where a is the radius of the rod placed within the burner and b is the burner radius (Fig. 1(b)).
The conditions assumed are : SL = 0.39 m/s, α = 20◦, a = 3 mm, b = 11 mm, R = b − a,
n = {n1, n2 . . . . . . n16}, ∆τ = τmax/16. Figure 5 (a,b) shows the comparison between the analytical
and modelled FTF for a uniformly perturbed V-flame. Figure 5(c) shows the n distribution for this
case.
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Figure 5: Variation of Gain and Phase of the FTF as a function of ω∗ and the distribution of n for
uniformly perturbed V-flame (α = 20◦). The – – line in (c) connects the midpoints of all the piecewise
constant n values.

3.2.2 Axial convective velocity perturbation

For axially convected perturbations in V-flames [7], the FTF is given by,

T (ω) =
2

ω2
∗

1

1− cos2 α

b− a
b+ a

[
exp(iω∗)− 1− exp(iω∗ cos2 α)− 1

cos2 α

]
+

2i

ω∗

1

1− cos2 α

b

b+ a

[
exp(iω∗ cos2 α)− exp(iω∗)

]
. (9)

Like axially convected conical flames, the FTF of V-flames depends on both reduced frequency, ω∗
and flame angle, α. In addition to this, the FTF also depends on the diameter of the rod a and the
diameter of the burner b. Figures 6 and 7 show the comparison between analytical and modelled FTF
for V-flames with flame angles 20◦ and 80◦ respectively. For axial convective perturbation, we observe
that the value of n is negative till a certain value of τ and then becomes positive. As α increases, the
time till which n has negative values decreases and the behaviour tends to that of uniformly perturbed
case as α approaches 90◦.

4. Physical insight to the behaviour of the flame

From the previous section, it is evident that the distributed time–lag model gives accurate pre-
diction of the FTF in the frequency domain for all flame types and perturbations considered. The n
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Figure 6: Variation of Gain and Phase of the FTF as a function of ω∗ and the distribution of n for
V-flame with axial convective perturbation and α = 20◦. The – – line in (c) connects the midpoints
of all the piecewise constant n values.
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Figure 7: Variation of Gain and Phase of the FTF as a function of ω∗ and the distribution of n for
V-flame with axial convective perturbation and α = 80◦. The – – line in (c) connects the midpoints
of all the piecewise constant n values.

distributions we obtained, enable us to construct the heat release law in the time–domain. The vari-
ation of n(τ) with τ gives physical insight into the behaviour of conical and V-flames subjected to
perturbations. The variation of n(τ) is different in each case and so is the behaviour. The fluctuations
in heat release rate is proportional to the fluctuations in flame surface area caused by the velocity per-
turbations [7]. Hence, the relation between the n distribution and the flame dynamics can be explained
in terms of the flame surface area.

4.1 Conical flames

Figure 8 shows the perturbed flame shapes when subjected to uniform and axial convective per-
turbations and also the corresponding n distribution. Under uniform perturbation, the flame elongates
and contracts with the perturbation. In such a case, the maximum change in flame surface area hap-
pens at regions near the flame base. When viewed in the time domain, this maximum area change
occurs at the initial time when a perturbation leaves the burner rim. This explains the peak value
of n at the lowest τ for uniformly perturbed flames (Fig. 8(b)). However, in the case of an axial
convective perturbation, we have a perturbation convecting with a velocity v̄/ cosα along the flame
front of length R/ sinα. This gives a convective time of τconv = R cosα/SL. Looking at the flame
shape of the axial convective perturbed flame, we can observe that the flame surface area experiences
a maximum when the perturbation reaches the tip of the flame. This occurs at the time, τconv, which
is clearly the time instant at which the n(τ) distribution for the axial convective case has a peak value
(Fig. 8). The parameters used are : SL = 0.39 m/s, α = 20◦, R = 11 mm, n = {n1, n2 . . . . . . n16},
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∆τ = τmax/16, τmax = 0.03s, τconv = 0.0265s. As α increases, τconv decreases. For flame angles
close to 90◦, the convective effects are negligible (τconv → 0) as the flame front is almost perpendic-
ular to the velocity perturbation and thus the flame tends to behave as a uniformly perturbed flame.
The shape of the n(τ) distribution is similar to the shape of the IR functions obtained by Blumenthal
et al [4].
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Figure 8: Flame shapes and variation of n for uniform perturbation and axial convective perturbation
for a conical flame. The red curve in (a) shows the steady state flame.
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Figure 9: Flame shapes and variation of n for uniform perturbation and axial convective perturbation
for a V-flame. The red curve in (a) shows the steady state flame.

4.2 V–flames

Figure 9 shows the perturbed flame shapes and n distribution for a V-flame. The behaviour of
V-flames can be explained using the same approach as in conical flames. For uniformly perturbed
V-flames, the flame elongates and contracts with the perturbation. Unlike the conical flames, the
maximum change in flame surface area happens at the flame tip. In the time domain, this maximum
area change occurs at the time instant close to τpert (Fig. 9(b)). This explains the peak value of n close
to τpert for a uniformly perturbed V-flames. For an axial convective perturbation, the perturbation is
convected along the flame front with at velocity v̄/ cosα. This is similar to the conical flame and in
this case R = b − a (Fig. 1(b)). The convective time for V-flames is τconv = R cosα/SL. From the
flame shape of axial convective perturbed flame, the maximum change in flame surface area happens
when the perturbation reaches the tip of the flame, which is at τconv. But, the n(τ) distribution for
the V-flame has negative values in the initial time range, till τconv. The sign of n then changes to a
positive value and remains positive for τ > τconv. As the convective perturbation propagates along the
flame front, from the flame anchor point, it causes a decrease in area which in turn decreases the heat
release rate. Hence, the negative sign for n values till τconv. The parameters used are : SL = 0.39m/s,
α = 20◦, a = 3mm, b = 11mm,R = b−a, n = {n1, n2 . . . . . . n16}, ∆τ = τmax/16, τmax = 0.0218s,
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τconv = 0.0193s. When α increases τconv decreases and the time at which n changes to positive values
decreases. As α approaches 90◦, the convective effects are negligible and the flame tends to behave
as a uniformly perturbed flame. This behaviour is similar to what we observe for conical flames. In
this case too, the shape of the n(τ) distribution is similar to the shape of the IR functions obtained by
Blumenthal et al. [4].

5. Conclusions

A time domain representation of a generalised heat release law with time–lag distribution was
developed and its corresponding FTF in the frequency domain was obtained. This model was applied
to conical and V-flames subjected to uniform and axial convective velocity perturbations. The model
parameters (n = {n1, n2 . . . . . . nk}) were determined, by minimising the mean square error (MSE)
between the analytical FTF and the modelled FTF. The distributed time lag model in the time domain
gives a good insight into the physical behaviour of the fundamental flames experiencing velocity
perturbations. Our results are similar to the IR functions given in [4], for conical and V-flames. The
values of τmax and ∆τ were chosen based on the process and its physical features. The method
can be extended to more practical cases like the matrix burner flames, swirl flames, and also to heat
exchanger transfer functions. Work is in progress to determine the best values for τmax and ∆τ from
measured or simulated FTF and provide a more generic formulation.
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