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The prediction of thermo-acoustic instabilities is fundamental for combustion systems such as 
industrial gas turbine engines. High-amplitude pressure oscillations, also known as humming, 
cause thermal and mechanical stress to the equipment leading to premature wear or even critical 
damage. In order to operate a combustion system safely, it is necessary to know its stability 
boundaries for the conditions under which it is expected to operate. Finding the operation 
boundaries based on trial and error is risky and expensive. 3D simulations can provide details on 
heat transfer and flow structures, but demand large computational efforts due to the multi-scale 
nature of combustion problems, and are not suited for parametric studies. In this article we use a 
1D Green's function approach to map the stability of a BRS (Beschaufelter Ring-Spalt) burner 
as a function of different parameters and boundary conditions. The burner is modelled as a 1D 
system where the flame is described by a Flame Describing Function (FDF) and boundary con-
ditions are described through reflection coefficients. The method is able to provide rapid predic-
tions on the stability behaviour of the system while giving a fundamental insight into the physi-
cal mechanism which is driving the instability.  

 

1. Introduction 
In the past decade, increased environmental awareness has resulted in the demand for the develop-
ment of combustion systems with reduced emission of pollutants, in particular CO2 and NOx. 
Modern combustion concepts satisfy the low-emission requirement by operating with premixed 
flames in the lean regime. However, this set-up brings a new problem: its implementation makes a 
combustion system more susceptible to thermoacoustic instabilities, and these can occur suddenly 
and spontaneously. These are generated by a feedback mechanism between a heat source character-
ized by a fluctuating heat release rate and the acoustic field in the burner.  
There are several approaches to the prediction of combustion instabilities [1]. One approach con-
sists on the use of low-order models, in which the combustor system is divided into series of sim-
pler subsystems and mathematical transfer function matrices are used to connect lumped acoustic 
elements to each other. Another approach is to perform CFD simulations to model directly the in-
teraction between combustion, acoustics and flow. The latter can be computationally expensive: 
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combustion modelling is a multiscale problem, with length scales ranging from less than 1 mm 
(flame front thickness) to more than 1 m (acoustic wavelength). In addition, the frequency to 
growth-rate ratio can be very large for an acoustic disturbance; this means that an unsteady CFD 
simulation of a slowly growing instability would necessitate the simulation of a large number of 
cycles, with high temporal accuracy. For parametric studies it is advantageous to have some analyt-
ical model, which describes the combustion system in terms of a few parameters and captures the 
key physical aspects. In this paper we present a stability analysis of the BRS (Beschaufelter Ring-
Spalt) burner where we use a nonlinear analytical approach based on the Green's function. The 
modeled set-up corresponds to an atmospheric swirl-stabilised burner where methane is burnt in the 
lean combustion regime. 
Instabilities in fluid dynamics are typically described by governing equations in the form of cou-
pled differential equations. We side-step them by turning our governing equations into a delay inte-
gral equation by using an approach based on the tailored Green's function. We will then illustrate 
that this can be solved with simple techniques, giving stability predictions quickly and without 
much numerical effort.  

2. The Green’s function approach 
The Green's function is the acoustic field generated in the tube at location x and time t by an im-

pulsive point source located at x’ and firing at t’. We denote it by 𝐺(𝑥, 𝑥!, 𝑡, 𝑡) and describe it in 
terms of the velocity potential. Its governing equation is the non-homogeneous wave equation, 
  

  

1
c2

∂2G
∂t2 − ∂2G

∂x2 = δ (x − x ')δ (t − t ')  ,                                                    (1) 

together with boundary conditions described by reflection coefficients   R0  at the inlet and  RL  at the 
outlet. The Green's function is a superposition of modes, with modal amplitudes gn  and modal fre-
quencies ω n , 

                                    G(x, x ',t,t ') = H (t − t ')ℑ gn (x, x ')e
− iωn (t−t ')

n=1

∞∑  .                                          (2) 

H t − ′t( )  denotes the Heaviside function. The quantities gn and ωn are calculated analytically for 
the specific set-up of the BRS burner.  

2.1 The modelled configuration 
The BRS set-up consists of a cylindrical burner tube (diameter 40 mm, length 16 cm), which is 
connected to a square combustion chamber (cross-section 90 × 90  mm2, length 30 cm). A central 
rod (diameter 16 mm, length 16 cm), which spans the length of the burner tube, acts as a bluff body 
and makes the burner tube effectively annular. A swirler with 8 blades is mounted on the central rod. 
The BRS test rig was initially developed by [2] at the Technische Universität München, and has 
been studied by different authors both experimentally [2] and numerically [3].  
In order to apply the Greens’ function approach to the BRS burner, we consider the idealized set-up 
shown in Figure 1. The burner tube is described as tube of constant cross-section S1, with constant 
temperature  T1 ; the combustion chamber has a larger cross-section S2, and a constant temperature 
  T2 > T1 . The swirler is ignored; this is justified by the 3-D numerical simulations in [4] which show 
that the swirler does not influence the acoustic field significantly. We assume that the flame is com-
pact and located at position xq,; this is downstream of the burner exit plane, which is located at xj. In 
the burner tube, the speed of sound is c1, and the mean density is 1ρ . In the hotter combustion 
chamber, they are c2 and 2ρ . The choice of this temperature distribution was based on [5], where it 
is shown that modelling the temperature gradient of the compact flame does not produce significant 
changes in the results with respect with a temperature jump. The boundary conditions at the tube 
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Figure 1: Schematic of the one-dimensional combustor under consideration. 

2.2 Analytical form of the Green’s function 
The expression of the modal amplitudes gn in the Green’s function of Eq. (2) have been calculated 
for the configuration described in section 2.1 (see [5,13] for details on the derivation procedure); the 
results are  

gn (x, ′x ) = i ĝ(x, ′x ,ω n )
2ω nF(ω n ) x=xq

′x =xq

,                                                                                                           (3) 

with 

 ĝ(x, ′x ,ω ) =
D(x,ω )C( ′x ,ω ) for xj < x < xq

C(x,ω )D( ′x ,ω ) for ′x < x < L

⎧
⎨
⎪

⎩⎪
                                      (4) 

and  

 C(x,ω ) = e
iω
c2

( x−L )
+ RLe

− iω
c2

( x−L )
,                                                                    (5a) 

D(x,ω ) = Sratio
2

c2
c1
(R0 e

iω
xq
c1 − e

− iω
x j
c1 )(e

iω
c2
( x−x j )

− e
− iω
c2
( x−x j )

)

+ 1
2
ρ1
ρ2

(R0 e
iω
xq
c1 + e

− iω
x j
c1 )(e

iω
c2
( x−x j )

+ e
− iω
c2
( x−x j )

).
                               (5b) 

 

F(ω ) = Sratio
2
1
c1
[i(R0 e

iω
x j
c1 − e

− iω
x j
c1 )(e

iω
x j−L
c2 + RLe

− iω
x j−L
c2 )

−i c1
c2

ρ1
ρ2

(e
iω
x j−L
c2 − RLe

− iω
x j−L
c2 )(R0e

iω
x j
c1 + e

− iω
x j
c1 )].

                                          (6) 

F(ω) is the characteristic function, and the equation F ω( ) = 0  determines the modal frequencies ωn 
in the Green’s function. Sratio = 1 2/S S  is the ratio of cross-sectional areas.  
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2.3 The integral governing equation 
The velocity potential   φ(x,t)  of a sound field generated by a heat source with heat release rate ( , )q x t  
(per unit mass), can be described by the acoustic analogy equation  

 
1
c2

∂2φ
∂t 2

− ∂2φ
∂x2

= − γ −1
c2

q(x,t)  ,                                       (7) 

together with the initial conditions 

 φ(x,t) t=0 =ϕ0δ (x − xq )   and   
  

∂φ(x,t)
∂t t=0

=ϕ′
0δ (x − xq ) .                       (8) 

This set of equations can be converted into an integral equation for the acoustic velocity u  with the 
use of the Green's function. For a compact source at qx x= , described by 

 q(x,t) = q(t)δ (x − xq ) ,                                           (9) 
the integral equation is (see [13]) 
 

 

  

uq (t) = ∂φ
∂x x=xq

= − γ −1
c2

∂G(x,x ',t,t ')
∂xt '=0

t
∫

x=xq
x '=xq

q(t ')dt '−
ϕ0

c2

∂G
∂x∂t ' x=xq

x '=xq
t '=0

+
ϕ0

'

c2

∂G
∂x x=xq

x '=xq
t '=0

 .         (10) 

It is worth noting that (10) is equivalent to the set of governing equations comprising (7), (8), and 
the boundary conditions described by 0R  and LR . Equation (10) has a clear physical explanation: 
the heat release ( )q t , which can be seen as a series of impulses covering the time interval ' 0, ...t t= , 
generates an acoustic velocity, which is the sum of responses to the individual impulses. We also 
note that equation (10) is valid for both linear and nonlinear thermoacoustic systems.  

3. Model for the heat release rate 
In order to calculate the acoustic velocity from (10), we need an expression for the rate of heat re-
lease in terms of the acoustic field. Following Heckl [14], we use a generalized nτ-law, 

  

Q(t)
Q

= n1

uq (t −τ )
U

− n0

uq (t)
U

,                                                     (11) 

where Q  is the global heat release rate, Q  is its mean value,  and U  is the mean flow velocity. τ  is 
the time-lag that characterizes the response of the flame, and 1 0,n n  are coupling constants. The 
time-lagged term ( )u t −τ  describes the convective effects along the flame surface, and the direct-
feedback term ( )u t  describes heat losses at the flame base where convection plays no role [12]. 
In many practical premixed combustion systems individual particles travel slightly different dis-
tances and reach the flame front with slightly different delay times. This effect can be incorporated 
by introducing a time-lag distribution D τ −τ c( ) , centered on τ c . Equation (11) then becomes 

 
′Q (t)
Q

= n1
τ=0

∞

∫
uq (t −τ )

u
D(τ −τ c ) dτ − n0

uq (t)
u
.                                            (12) 

Time-lag distributions have been considered in several earlier flame models [6,7]. Unlike the dis-
crete time-lag model (11), distributed time-lag models can explain the low-pass filter behaviour that 
is usually observed in measured flame transfer functions; moreover, a time-lag distribution can ac-
count for convective processes [7]. Here we use a Gaussian distribution with standard deviation σ,   

 D(τ ) = 2
σ 2π

e
− τ 2

2σ 2 .                                                           (13) 
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We can write a local heat release law based on equation (12) as follows   
  

 

  

q(t) = K n1 uq
τ=0

∞

∫ (t − τ)D(τ − τc )dτ − n0uq(t)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,                                       (14) 

where  

 
  
K = Q

U2S2ρ 2
                                                                (15) 

is the heater power per mass flow, having units  Wskg−1 .  

3.1 Derivation of the heat release law through the Flame Describing Function (FDF) 
The FDF is the response of the flame to a perturbation having a given frequency and amplitude; it 
relates the normalized fluctuations of the heat release to the normalized fluctuations of the acoustic 
velocity at a reference position upstream the flame: 

 
  
FDF( A,ω ) = q( A,ω ) / Q

u '( A,ω ) / U
 .                                                      (16) 

The FDF can be obtained experimentally by applying a harmonic perturbation at the inlet (usually 
through a loudspeaker or a siren) and recording the time series of the acoustic velocity and heat 
release rate fluctuations. Spectral analysis then allows the derivation of the gain and phase of the 
flame response as a function of the perturbation amplitude and frequency (see [8]). This experi-
mental procedure can be mimicked by full CFD simulation.  
The inclusion of the amplitude-dependence is fundamental to the modelling of nonlinear effects, 
such as the formation of limit cycles. Our approach represents an advance compared with early non-
linear models, where an artificial saturation amplitude was imposed in order to "predict" limit cy-
cles [10]. 

3.2 Modal analysis 
The Green's function contains the information on the system parameters such as the tube geometry, 
temperature and end conditions, but it does not contain any information on the parameters that char-
acterize the thermoacoustic feedback loop. The aim of this section is to determine the stability be-
haviour of individual acoustic modes in the presence of feedback. To this end, we express the 
acoustic velocity as a sum of modes with complex amplitudes  um  and complex frequencies mΩ , 

 ( )**

1

( ) m mi t i t
q m m

m

u t u e u e
∞

−

=

= +∑ Ω Ω  .                                (17) 

 um  and mΩ  are unknown at this stage; their complex conjugate is denoted by *. It is possible to de-
termine them from a series of mathematical manipulations, based on the integral equation (10), the 
local heat release rate q(t)  in Eq. (14), and the modal expression for the Green’s function in Eq. (2). 
We report here the equations for these two quantities that were obtained in [11] and extended to 
include the time-lag distribution. The equation for the frequencies Ωm is  

 

  

(n1 eiΩmτ

τ=0

∞

∫ D(τ −τ c )dτ − n0 ) Gn

i ω n −Ωm( ) −
Gn

*

i ω n
* +Ωm( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥n=1

∞

∑ = − 2c2

K(γ −1)
,               (18) 

with Gn  given by  

 Gn =
∂gn (x, ′x )

∂x x=xq ,
′x =xq

                                                                         (19)  
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 and the equation for um is  

 

  

m=1

∞

∑ um

(−n1 eiΩmτ

τ=0

∞

∫ D(τ −τ c )dτ + n0 )

i ω n −Ωm( ) + um
*

(−n1 e− iΩm
* τ

τ=0

∞

∫ D(τ −τ c )dτ + n0 )

i ω n +Ωm
*( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= iω nϕo + ′ϕ0

K(γ −1)
,        (20)          

as well as the complex conjugate of (20). Once (18) has been solved for mΩ , the solution can be put 
into (20) to obtain the solution for the velocity amplitudes mu . 
Equations (18) and (20) show that the eigenmodes of the thermoacoustic system depend also on the 
parameters in the heat release model, in particular on the heater power  K , the coupling constants  n0 
and n1, and implicitly through ( )D τ , on the parameters τc and σ in the time-lag distribution. We call 
these eigenmodes the heat-driven modes of the system and their frequencies the heat-driven fre-
quencies. Unless the feedback is missing, mΩ  and  ωm  differ both in real and imaginary part. The 
shift in real part is generally non-negligible (see [11]); this is a consequence of the thermoacoustic 
feedback. The imaginary part of mΩ  gives the stability behaviour of the heat-driven mode m .  

4. Stability maps 
In this section we investigate the stability behaviour of the first heat-driven mode Ω1. The configu-
ration in section 2.1 is described analytically by the Green's function in section 2.2, and the flame is 
described by a heat release law of the form (14) with amplitude-dependent parameters: 

                      0 0.408 0.186 /n A U= −                                                                            (21a) 

 1 1.408 0.186 /n A U= −                                                                            (21b)           

   τ = 4.088×10−3 − (1.193×10−3)A / U s                                       (21c) 

  
σ = 8.223×10−4 − 2.905×10−4 A / U( ) s                                      (21d) 

These results have been obtained from full CFD simulations; for details, see [9]. The flame (which 
is modelled by a flame speed closure model) is excited numerically by a single-frequency signal, for 
different amplitudes and frequencies. The perturbation is applied at the inlet and the flame response 
is computed. Numerical derivations methods based on a multiple-frequency signals cannot be ap-
plied to such analysis since the large perturbation amplitudes induce a nonlinear flame response. 
These numerical FTF results were fitted using the analytical expression 

    
2 2/2

1 0ciFTF n e e n−= −ωτ σ ω ,                          (22) 

which is the frequency-domain equivalent of Eq. (14). The parameters n0, n1, τc and σ were deter-
mined by a constrained least-squares method, i.e. by minimising the difference between (22) and 
the numerically obtained FTF.  
In the following we present stability maps determined from the solution  Ω1  of (18) for a setup with 
the following features:   T1 = 300K ,   T2 = 2380K , K = 2.1×106Wkg−1s−1 , Sratio = 0.13 (ratio of 
cross-sectional areas), xj =0.16m (position of the temperature jump) and xq = 0.21m (flame position). 
These parameters are kept constant, while the tube length L was treated as control parameter and 
varied between L=0.36 m and L=1.26 m. The velocity amplitudes A (normalized with the mean 
flow velocity U ) were in the range   0.01< A / U < 2 . The tube was a quarter-wave resonator with

  R0 = 1 (rigid end at x=0) and   RL = −1  (open end at x=L). No losses of acoustic energy occur at the-
se ends. 
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Stability maps for two different time-lag distributions are depicted in figure 2: (a) shows a Gaussian 
distribution with σ given by (21d), while (b) shows the case for σ=0, which represents a discrete 
time-lag.  

 
     (a)                                                                        (b) 

Figure 2: Stability map for the control parameter L. (a) Gaussian time-lag distribution. (b) discrete time-lag.  

Green areas indicate regions of instability: if the combustion system is such that the pair of values 
(L, A /U ) lies in an instability region, the perturbation will grow until (L,  A / U ) reaches the border 
with the neighbouring stable region. White areas are regions of stability: if the point (L, A /U ) lies 
in such a region, the perturbation, will decay in amplitude until the border with the next unstable 
region is reached. Interfaces between stable and unstable regions correspond to limit cycles: the 
growth rate of the perturbation is 0 for values of (L, A /U ) along the interfaces (see also [11]).  
We observe that the presence of a time-lag distribution tends to shift the unstable regions towards 
lower amplitude values. There are two zones of stability for infinitesimal perturbation: 0.36 m 
<L<0.52m and 0.82 m <L<1.1m for the Gaussian time-lag distribution, 0.36 m <L<0.51m and 0.79m 
<L<1.02m for the discrete time-lag.  

 
(a)                                                                        (b) 

Figure 3: Stability map for the control parameter L. (a) open end with small losses. (b) open end with large 
losses.  

Figure 3 shows the case where acoustic losses occur at the open end: Figure 3(a) is the stability map 
for small losses (RL=-0.9), and 3(b) for larger losses (RL=-0.576-i0.491). As expected, the size of 
the unstable regions decreases with losses. 
Similar maps can be obtained for other control parameters, such as the heater power K, or the flame 
position xq. However, since in the BRS burner the heater power is increased by varying the mass 
flow, K should be considered as constant. 
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5. Conclusion 
The Green’s function analysis is a mathematical tool which has a very concrete physical meaning: it 
is the response of the burner to an impulse excitation. This physical interpretation is very valuable. 
In this paper we have used a Green’s function approach to describe a laboratory swirl burner in 
terms of actual physical modes, focussing on two effects: a time-lag distribution in the flame re-
sponse, and acoustic losses at the tube ends. The physical insight gained with our approach is fun-
damental for the understanding and control of thermoacoustic feedback. Our approach can comple-
ment numerical methods which are computationally expensive such as Large Eddy Simulation, or 
Direct Numerical Simulation, providing a rapid estimation of the relevant parameter range. 
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