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The prediction of thermoacoustic instabilities is fundamental for combustion systems
such as domestic burners and industrial gas turbine engines. High-amplitude pressure
oscillations cause thermal and mechanical stress to the equipment, leading to
premature wear or even critical damage. In this paper we present a new approach
to produce nonlinear (i.e. amplitude-dependent) stability maps of a combustion
system as a function of various parameters. Our approach is based on the tailored
Green’s function of the combustion system, which we calculate analytically. To
this end, we assume that the combustor is one-dimensional, and we describe its
boundary conditions through reflection coefficients. The heat release is modelled by
a generalised nτ law. This includes a direct-feedback term in addition to the usual
time-lag term; moreover, its parameters (time lag, coupling coefficients) depend on the
oscillation amplitude. The model provides new insight into the physical mechanism
of the feedback between heat release rate and acoustic perturbations. It predicts the
key nonlinear features of the thermoacoustic feedback, such as limit cycles, bistability
and hysteresis. It also explains the frequency shift in the acoustic modes.
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1. Introduction
Instabilities in fluid dynamics are caused by some feedback mechanism and

are typically described by governing equations in the form of coupled differential
equations. Here we study the case of thermoacoustic instabilities, where the feedback
is between the acoustic field and the heat release rate in a combustor. A special
feature of this type of instability is the delayed feedback. This leads to a class
of governing equations that are characterised by a delay term. Delay differential
equations are not well studied in fluid dynamics. We sidestep them by turning our
governing equations into a delay integral equation by using an approach based on the
tailored Green’s function. We will then illustrate that this can be solved with simple
techniques, giving stability predictions quickly and without much numerical effort.
Our approach is very general and likely to be of benefit to other branches of fluid
dynamics.
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When a heat source, such as a flame or hot-wire gauze, is situated in a cavity,
thermoacoustic feedback can occur between the heat source and the acoustic field
in the cavity, and this may result in intense oscillations. This effect is termed
‘thermoacoustic instability’. The pressure amplitudes may be as high as 2 % of the
mean pressure in the cavity (see Scarinci 2005). Combustion systems that are prone to
suffering thermoacoustic instabilities include domestic heating systems, gas turbines,
rockets, furnaces and afterburners of jet aircraft. The oscillations may be so violent
that they cause structural damage; for example, Goy, James & Rea (2005) report the
destruction of a combustion liner and a burner assembly.

Thermoacoustic instabilities were discovered in the nineteenth century by Higgins
(1802) and Rijke (1859). They received much attention by rocket engineers in
the 1950s and 1960s during the development of liquid-propellant rocket engines
(Crocco & Cheng 1956). More recently, they have again become the focus of intense
research due to increased environmental awareness, demanding the development of
combustion systems with reduced emission of pollutants, in particular CO2 and NOx.
Modern combustion concepts satisfy the low-emission requirement by operating with
premixed flames in the lean regime. However, this concept brings a new problem:
its implementation makes a combustion system more susceptible to thermoacoustic
instabilities, and these can occur suddenly and spontaneously.

A vast amount of literature on thermoacoustic instabilities has been produced over
the years. One can get an overview in the review articles of Candel (2002), Lieuwen
(2003) and Huang & Yang (2009), in the books by Lieuwen & Yang (2005) and
Poinsot & Veynante (2005), and in Culick (2006). The basic mechanism responsible
for thermoacoustic instability is well understood: a flame with a varying rate of heat
release acts like a sound source, generating sound waves. The sound waves in turn
affect the heat release rate, since they are reflected at the cavity boundaries, and then
travel back to the flame. The phase of these reflected waves may be such that the heat
release rate is increased, and, in such a case, a mutual enhancement of the sound field
and heat-release-rate oscillations ensues. The frequency of such an unstable oscillation
is typically close to one of the resonance frequencies of the cavity.

Thermoacoustic nonlinearities are typically due to the interaction between heat
release rate and the acoustic field, whereas nonlinearities in the acoustic field itself
are unimportant in most cases (Culick 2006). They manifest themselves in effects
such as limit cycle oscillations, triggering, hysteresis, quasi-periodic oscillations and
chaos. Various approaches have been used to study nonlinear effects in combustion
systems, including experimental, numerical and analytical methods, or a combination
of them.

Test rigs of various designs have been used for experimental nonlinear studies. The
horizontal Rijke tube is the most basic system to exhibit thermoacoustic nonlinearities.
It is a tube with two open ends, a mean flow through the tube, and a compact
heat source (typically an electrically heated wire grid) inside the tube. The main
parameters that can be varied are the position and power of the heat source, as well
as the mean flow speed. Heckl (1990) performed experiments where she measured
the heater transfer matrix for different velocity amplitudes and then deduced a
semi-empirical nonlinear correlation between the heat release rate and the velocity.
Matveev & Culick (2003a,b) worked with a similar set-up; they measured limit
cycle amplitudes for different heater powers, and they observed the presence of
hysteresis. Similar results were reported by Mariappan (2012), who also used heater
power as control parameter. Also using a horizontal Rijke tube, Gopalakrishnan
& Sujith (2014) have made detailed measurements to investigate how three of the
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system parameters (heater power, heater location and mass flow rate) influence
the hysteresis characteristics. In a subsequent experimental and numerical study
(Gopalakrishnan & Sujith 2015), they found that external noise reduces the width of
the hysteresis zone.

Experimental nonlinear studies have also been performed on flame-driven laboratory
test rigs. Noiray et al. (2008) developed a burner where the cavity was a tube with
one closed end and one open end (quarter-wave resonator), and the heat source was a
two-dimensional (2D) array of many small flames (matrix flame), situated close to the
open end. The tube length could be adjusted continuously and was used as control
parameter. The amplitude-dependent transfer function relating the heat release rate
and acoustic velocity in the frequency domain (flame describing function, or FDF)
was measured. The experiment revealed linear and nonlinear stability boundaries, limit
cycles and hysteresis. Mode switching and instability triggering was also observed.
Kabiraj & Sujith (2012) studied a set-up consisting of a quarter-wave resonator
with a laminar conical premixed flame. As they moved the flame position along the
tube axis, they observed a sequence of transitions: (i) from stable flame to limit
cycle oscillations via a subcritical Hopf bifurcation, (ii) to quasi-periodic oscillations,
(iii) to intermittent oscillations, and finally (iv) to flame blow-out. Nair & Sujith
(2014) experimented on a laboratory-scale turbulent dump combustor with a premixed
flame. They progressively increased the air flow rate and studied the transition from
low-amplitude aperiodic oscillations (combustion noise) to high-amplitude periodic
oscillations (thermoacoustic instability). They discovered that the multifractal nature of
the combustion noise disappears during this transition and conclude that this feature
has prognostic value in that it can predict an impending thermoacoustic instability.

There are many numerical studies (linear and nonlinear) on thermoacoustic
instabilities. Combustion computational fluid dynamics (CFD) is the method of choice
for modelling test rigs with complicated geometry and flow structures. However, this
is computationally expensive because combustion is a multiscale problem, with
length scales ranging from less than 1 mm (flame front thickness) to more than 1 m
(acoustic wavelength). Several methodologies, with varying degrees of resolution and
corresponding computational effort, are available. The unsteady Reynolds-averaged
Navier–Stokes (URANS) method requires relatively low computational effort; it has
been used by many researchers, for example Armitage et al. (2006) or Shahi et al.
(2015), and is popular in the industrial research community. Large eddy simulation
(LES), used for example by Franzelli et al. (2012) or Tay-Wo-Chong & Poplifke
(2013), is more accurate, but requires high-performance computing. Direct numerical
simulation (DNS) produces predictions from first principles, capturing even the
smallest scales; however, it requires an extreme amount of numerical effort and
is only used for fundamental research, e.g. by Talei, Hawkes & Brear (2013) and
Wang et al. (2013). In addition to multiple length scales, combustion modelling may
involve multiple time scales, and this requires further numerical effort. This applies,
for example, to acoustic disturbances that have a large frequency to growth-rate ratio,
i.e. that grow or decay slowly in time. Combustion CFD then requires the calculation
of a large number of cycles with high temporal accuracy. Moreover, combustion CFD
only gives limited physical insight because it is impossible to separate individual
physical processes.

Analytical methods come into their own when physical insight is a priority. The
most commonly used methods for nonlinear problems in thermoacoustics are network
modelling, the Galerkin method and adjoint optimisation.

Network modelling is a well-known linear concept, and is done in the frequency
domain. It involves calculating the complex eigenfrequencies, and deducing the
stability behaviour from the sign of their imaginary part. It can still be applied
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in a quasi-linear fashion for cases where the heat source is described by an
amplitude-dependent flame transfer function. This amplitude-dependent network
modelling gives a surprisingly large range of predictions, as has been shown by
Noiray et al. (2008): linear/nonlinear stability, limit cycle amplitudes, mode switching
and instability triggering. However, the method is limited to cases where one mode
dominates; it is unsuitable for cases where harmonics of the dominant mode come
into play.

A more general method for analysing thermoacoustic oscillations is the Galerkin
expansion, which goes back to Zinn & Lores (1971). The acoustic field in the
combustion chamber is written as a sum of basis functions, termed ‘Galerkin
modes’, with time-varying coefficients. The Galerkin modes are chosen to be
the acoustic eigenmodes of the combustion chamber, which satisfy the relevant
boundary conditions. The time-varying coefficients are calculated from a coupled set
of nonlinear ordinary differential equations (ODEs). These are solved numerically,
and one then obtains the time history of the thermoacoustic oscillation. The Galerkin
method works well for systems, where the eigenfunctions are given by simple
analytical expressions, e.g. by sin(nπx/L) for mode n of the acoustic pressure in a
tube of length L with open ends. This is the case for the horizontal Rijke tube, which
has been investigated with a Galerkin approach by various researchers. For example,
Balasubramanian & Sujith (2008) have studied the transient growth and triggering that
can result from the combined effect of nonlinearity and non-normality; Subramanian
et al. (2010) have calculated bifurcation plots for various system parameters (heater
power, heater location, damping) and observed interesting dynamical behaviours.
However, for many combustor geometries, the eigenmodes have a slightly different
profile. The Galerkin approach can still be used, but one then needs to include more
terms in the Galerkin series to get useful results, and the physical interpretation of
Galerkin modes as eigenfunctions gets lost. For example, Kashinath, Hemchandra &
Juniper (2013) studied a 2D ducted flame whose heat release rate was described by a
nonlinear kinematic model (the G-equation). They performed time-domain simulations
with a Galerkin approach and found that higher Galerkin modes can have a significant
effect on predictions of limit cycle amplitude. Even worse, in the work by Mariappan
& Sujith (2011), 100 Galerkin modes had to be included in order to achieve good
accuracy.

Adjoint optimisation, known in hydrodynamics to study bypass transition to
turbulence, has recently been applied in thermoacoustics, most notably by Juniper
(2011). Here the direct governing equations are integrated forwards in time and the
adjoint equations backwards in time, going round a loop in every time step. This is
combined with an optimisation routine and allows one to predict the most dangerous
states, i.e. the operating conditions that give maximum energy growth.

There is a need for an analytical method that is as general as the Galerkin method
and as powerful as adjoint optimisation, but has a meaningful physical basis so as
to provide direct physical insight. Such a method actually exists, but only very few
researchers are using it: it is based on the Green’s function. The Green’s function
is an impulse response. It is best used in the tailored form, which is the impulse
response of the fluid in the combustion chamber; in other words, the tailored Green’s
function satisfies the boundary conditions of the combustion chamber. Naturally, this
is a superposition of modes. With the Green’s function, the governing equation for the
acoustic field can be converted into an integral equation. This integral equation has a
clear physical meaning: it describes the acoustic field at the current time as a sum of
responses to the heat source at previous times. The Green’s function approach uses
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an expansion in terms of actual acoustic modes, unlike the Galerkin method, which
uses somewhat artificial modes. In contrast to adjoint optimisation, the interpretation
of its results is straightforward.

Heckl & Howe (2007) were the first to use a Green’s function approach in a
thermoacoustics context. They considered a tubular combustion chamber with flame
holder (blockage), jump in cross-sectional area and jump in mean temperature. They
made linear stability predictions for the case where the flame was described by a
simple time-lag law. Stow & Dowling (2009) modelled an annular combustor with
a Green’s function approach, assuming that the heat release rate saturates above a
certain amplitude. They calculated the time history of the acoustic field and the heat
release and showed that both undergo limit cycle oscillations. Heckl has made a
couple of Green’s function-based studies with a nonlinear heat release law obtained
from measurements: Heckl & Kosztin (2013) developed a comprehensive model
for a laboratory burner with a tuneable end condition consisting of a cavity-baked
perforated plate; this enabled them to make stability predictions for various heater
powers. Heckl (2015) modelled the nonlinear stability behaviour of a matrix burner
(a laboratory burner consisting of a quarter-wave oscillator with a 2D array of small
flames near the open end) and correctly predicted the behaviour that was observed
experimentally.

Despite their advantages, Green’s function methods have not been exploited to
their full potential. They are a tool by which the time history of a thermoacoustic
oscillation can be calculated while a control parameter is varied, thus simulating
directly what is done in experiments. This application is new. We want to demonstrate
it in the present paper by focusing on hysteresis behaviour. We are going to simulate
experiments where hysteresis has been observed when a control parameter is first
increased and then decreased (or vice versa). In this way, we aim to illustrate that
Green’s functions:

(i) are suitable for qualitative analysis of experimentally observed hysteresis,
(ii) give good physical insight into the physical mechanisms that underlie the

hysteresis behaviour, and
(iii) give predictions rapidly and with a minimum of numerical effort.

For our analysis we consider a one-dimensional (1D) model for a burner, where
the combustion chamber is a tube with a cold section upstream and a hot section
downstream. We calculate the Green’s function for this set-up. The heat source is
assumed to be acoustically compact; it will be described by an FDF, which captures
its linear as well as nonlinear behaviour. Two types of burner will be considered: a
Rijke tube and a quarter-wave resonator. Only the first mode of the burner will be
taken into account. We will analyse the thermoacoustic instability of this burner for
several parameters, in particular the heat source position, tube length and heater power.
We treat these as control parameters and predict the stability boundaries for them
as a function of perturbation amplitude. From these results, we make quantitative
predictions for the frequency and amplitude of limit cycles, and we establish the
presence of hysteresis.

This paper is structured as follows. In § 2, the Green’s function, tailored to the
geometry under consideration, is introduced. Section 3 gives the governing equation
for the acoustic velocity in terms of the Green’s function and the rate of heat
release from the heat source. We use a generic nonlinear heat release law, which is
presented in § 4. Section 5 shows two approaches to solve the governing equation:
one is by direct iteration stepping forwards in time, and the other is a modal analysis.
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Heat source

FIGURE 1. (Colour online) Schematic of the 1D combustor under consideration. Boundary
conditions are described by pressure reflection coefficients R0 and RL. A steady heat source
at xq creates a mean temperature jump from T̄1 to T̄2, and associated jumps in the mean
density and speed of sound. Conditions are uniform within the cold region (0 < x < xq)
and the hot region (xq < x< L).

We calculate the stability boundaries for three control parameters (heat source position,
tube length and heater power); the results are presented in § 6. We also calculate the
oscillation frequencies for the case with and without thermoacoustic feedback; the
results are presented and compared in § 7. Validation of our results is shown in § 8.
In § 9, we investigate the occurrence of hysteresis as one of the control parameters
is increased and subsequently decreased. Conclusions are drawn in § 10.

2. Green’s function
The Green’s function is the acoustic field generated in the tube at location x and

time t by an impulsive point source located at x′ and firing at t′. We denote it by
G(x, x′, t, t′) and describe it in terms of the velocity potential. Its governing equation
is the non-homogeneous wave equation,

1
c2

∂2G
∂t2
− ∂

2G
∂x2
= δ(x− x′)δ(t− t′), (2.1)

together with boundary conditions described by reflection coefficients R0 at the inlet
and RL at the outlet. Figure 1 shows the set-up.

The tube is divided into a cold section (denoted by subscript 1) and a hot section
(denoted by subscript 2), separated by an interface at xq. The mean temperature, mean
density and speed of sound are denoted, respectively, by T̄ , ρ̄ and c.

The Green’s function of this set-up is a superposition of modes, with modal
amplitudes gn and modal frequencies ωn,

G(x, x′, t, t′)=H(t− t′)Re
∞∑

n=1

gn(x, x′)e−iωn(t−t′). (2.2)

Here H(t − t′) denotes the Heaviside function; and gn and ωn can be calculated
analytically. This requires many mathematical manipulations, which are not described
here. Interested readers can find details in Heckl (2013) for a similar 1D set-up. The
modal frequencies ωn are the solutions of the characteristic equation

F(ω)= 0, (2.3a)
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with

F(ω) = 1
2

1
c1

[
i(R0eiω(xq/c1) − e−iω(xq/c1))(eiω(xq−L)/c2 + RLe−iω(xq−L)/c2)

− i
c1

c2

ρ̄1

ρ̄2
(eiω(xq−L)/c2 − RLe−iω(xq−L)/c2)(R0eiω(xq/c1) + e−iω(xq/c1))

]
. (2.3b)

The modal amplitudes gn are given by

gn(x, x′)= i
ĝ(x, x′, ωn)

ωnF′(ωn)
, (2.4a)

with

ĝ(x, x′, ω)=
{

D(x, ω)C(x′, ω) for xq < x< x′,
C(x, ω)D(x′, ω) for x′ < x< L,

(2.4b)

and
C(x, ω)= eiω(x−L)/c2 + RLe−iω(x−L)/c2, (2.5a)

D(x, ω) = 1
2

c2

c1
(R0eiω(xq/c1) − e−iω(xq/c1))(eiω(x−xq)/c2 − e−iω(x−xq)/c2)

+ 1
2
ρ̄1

ρ̄2
(R0 eiω(xq/c1) + e−iω(xq/c1))(eiω(x−xq)/c2 + e−iω(x−xq)/c2). (2.5b)

3. The integral governing equation
The velocity potential φ(x, t) of a sound field generated by a heat source with heat

release rate q(x, t) (per unit mass) can be described by the acoustic analogy equation

1
c2

∂2φ

∂t2
− ∂

2φ

∂x2
=−γ − 1

c2
q(x, t) (3.1)

(see e.g. equation (13.19) in Dowling & Stow (2005)), together with the initial
conditions

φ(x, t)|t=0 = ϕ0δ(x− xq) and
∂φ(x, t)
∂t

∣∣∣∣
t=0

= ϕ′0δ(x− xq). (3.2a,b)

This set of equations can be converted into an integral equation for the acoustic
velocity u with the use of the Green’s function. For a compact source at x = xq,
described by

q(x, t)= q(t)δ(x− xq), (3.3)

the integral equation is

uq(t)= ∂φ

∂x

∣∣∣∣
x=xq

= −γ − 1
c2

∫ t

t′=0

∂G(x, x′, t, t′)
∂x

∣∣∣∣ x=xq

x′=xq

q(t′) dt′

− ϕ0

c2

∂G
∂x∂t′

∣∣∣∣ x=xq

x′=xq

t′=0

+ ϕ
′
0

c2

∂G
∂x

∣∣∣∣ x=xq

x′=xq

t′=0

(3.4)
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(see Heckl & Howe 2007). It is worth noting that (3.4) is equivalent to the set of
governing equations comprising (3.1), (3.2) and the boundary conditions described by
R0 and RL. Equation (3.4) is obviously easier to handle; also it has a clear physical
explanation: the heat release q(t), which can be seen as a series of impulses covering
the time interval t′ = 0, . . . , t, generates an acoustic velocity, which is the sum of
responses to the individual impulses. We also note that (3.4) is valid for both linear
and nonlinear thermoacoustic systems.

4. Model for the heat release rate
In order to calculate the acoustic velocity from (3.4), we need an expression for the

rate of heat release in terms of the acoustic field. Following Heckl (2015), we use a
generalised nτ law,

Q(t)
Q̄
= n1

uq(t− τ)
Ū

− n0
uq(t)

Ū
, (4.1)

where Q is the global heat release rate, Q̄ is its mean value, Ū is the mean flow
velocity, τ is the time lag that characterises the response of the flame, and n1 and n0
are coupling constants. Equation (4.1) is a generic heat release law, and the two terms
in it have physical meaning: the time-lag term u(t − τ) describes convective effects
along the flame surface, and the direct-feedback term u(t) describes heat losses at the
flame base where convection plays no role. The inclusion of a direct-feedback term
may seem new, but in fact it has been applied implicitly by earlier researchers, e.g.
by Kornilov (2006) and Kornilov et al. (2009).

The local heat release rate (per unit mass) corresponding to (4.1) can be written as

q(t)=K[n1uq(t− τ)− n0uq(t)], (4.2)

where

K = Q̄
ŪSρ̄

(4.3)

is the heater power per mass flow (having units W s kg−1), S is the cross-sectional
area of the tube and ρ̄ is the mean density. The three parameters τ , n0 and n1 are
assumed to be dependent on the perturbation amplitude; we use the non-dimensional
expression A/Ū, where A is the velocity amplitude. As in Heckl (2015), the time lag
has a quadratic amplitude dependence,

τ = τ0 + τ2

(
A
Ū

)2

, (4.4)

the parameters n0 and n1 are given by

n0 = gmax(A)− 1
2

and n1 = gmax(A)+ 1
2

, (4.5a,b)

where gmax has a decreasing linear dependence on amplitude,

gmax = g0 − g1
A
Ū
. (4.6)

The quantity gmax has a physical meaning: it is the gain maximum in the spectrum
of the FDF. The constants τ0, τ2, g0 and g1 can be determined empirically by
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extrapolation of experimental FDF data (see Noiray et al. 2008; Heckl 2015); τ0
and g0 are the zero-amplitude values of time lag and gain maximum; and τ2 and g1
regulate the strength of the amplitude dependence.

The amplitude dependence is such that the time lag increases and the gain
maximum decreases with amplitude. It is plausible that flames with such properties
exist. One example is the matrix flame investigated experimentally by Durox et al.
(2009). They observed that variations in flame surface area are stronger at low
amplitudes than at high amplitudes; this would explain why the heat release rate of
their flame saturates, which is in line with a decreasing gain maximum as described
by (4.6). They also observed that the stand-off distance (i.e. the distance between
flame holder and flame base) oscillated more strongly at high amplitudes than at low
amplitudes, indicating that the convective delay increases with amplitude.

We stress that we are applying here a nonlinear heat release law, which is generic,
but also motivated by experimental observations. It includes the nτ law as a special
case (n0 = 0) and reduces to the linear case by putting τ2 = 0, g1 = 0. It can be
easily applied to a variety of burner configurations by choosing an appropriate set of
parameters.

5. Time evolution of the perturbation and eigenmodes
The integral equation (3.4) governs the evolution of the acoustic field in the

presence of thermoacoustic feedback. In the following we will use two types of
analysis:

(i) a numerical solution of the integral equation by iteration, which gives the time
evolution of the perturbation; and

(ii) an analytical approach resembling an eigenvalue calculation, which gives the
frequencies of the acoustic modes driven by thermoacoustic feedback (see also
Bigongiari & Heckl 2014).

5.1. Numerical solution by iteration
In order to solve (3.4) by iteration, we define the integral

In(t)=
∫ t′=t

t′=0
eiωnt′q(t′) dt′, (5.1)

and split it into two parts (one over the slightly reduced time interval t′=0, . . . , t−1t
and one over the small time interval t′ = t−1t, . . . , t),

In(t)=
∫ t−1t

t′=0
eiωnt′q(t′) dt′ +

∫ t

t′=t−1t
eiωnt′q(t′) dt′. (5.2)

We use this, and the modal form of G(x, x′, t, t′) in (2.2), to rewrite the integral
equation (3.4) as

uq(t)=−γ − 1
c2

Re
∞∑

n=1

Gne−iωntIn(t)− 1
c2

Re
∞∑

n=1

(iωnϕ0 + ϕ′0)Gne−iωnt, (5.3)

where the abbreviation

Gn = ∂gn(x, x′)
∂x

∣∣∣∣ x=xq

x′=xq

(5.4)
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has been introduced. With the assumption that q(t′) is constant during the small time
interval 1t, the integral In can be approximated as

In(t)= In(t−1t)+ q(t−1t)
1− e−iωn1t

iωn
eiωnt. (5.5)

The modal frequencies ωn, needed in (5.5), are given by the characteristic equation
(2.3a), which can be solved numerically, e.g. by the Newton–Raphson method. In each
iteration step, In(t) is updated by (5.5), then uq(t) by (5.3), and finally q(t) by (4.2).

5.2. Modal analysis
The Green’s function contains the information on the system parameters, such as
the tube geometry, temperature and end conditions, but it does not contain any
information on the parameters that characterise the thermoacoustic feedback loop.
In order to determine the stability of individual acoustic modes in the presence
of feedback, we express the acoustic velocity as a sum of modes with complex
amplitudes um and complex frequencies Ωm,

uq(t)=
∞∑

m=1

(ume−iΩmt + u∗meiΩ∗mt). (5.6)

At this stage, um and Ωm are unknown; their complex conjugate is denoted by ∗. It is
possible to determine them from a series of mathematical manipulations, based on the
integral equation (3.4), equation (4.2) for q(t) and (2.2) for G(x, x′, t, t′)| x=xq

x′=xq

. Details

of the derivation can be found in appendix A. The resulting equations are

(n1eiΩmτ − n0)

∞∑
n=1

[
Gn

i(ωn −Ωm)
− G∗

n

i(ω∗
n
+Ωm)

]
=− 2c2

K(γ − 1)
, (5.7)

with Gn given by (5.4), and

∞∑
m=1

[
um
(−n1eiΩmτ + n0)

i(ωn −Ωm)
+ u∗m

(−n1e−iΩ∗mτ + n0)

i(ωn +Ω∗m)
]
= iωnϕo + ϕ′0

K(γ − 1)
, (5.8)

as well as the complex conjugate of (5.8). Equation (5.7) is an equation for the
frequencies Ωm. Once this has been solved for Ωm, the solution can be put into
(5.8) and its complex conjugate to obtain the solution for the velocity amplitudes um

and u∗m.
Equations (5.7) and (5.8) show that the eigenmodes of the thermoacoustic system

depend also on the parameters in the heat release model, in particular the heater
power K, the time lag τ and the coupling constants n0 and n1. We call these
eigenmodes the heat-driven modes of the system and their frequencies the heat-driven
frequencies. Unless the feedback is missing, Ωm and ωm differ in both real and
imaginary parts. The shift in real part is generally non-negligible (see results in § 8);
this is a consequence of the thermoacoustic feedback. The imaginary part of Ωm

gives the stability behaviour of the heat-driven mode m.
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6. Stability maps
The stability behaviour of an individual mode will be determined as described in

§ 5.2, and the effect of the following control parameters will be examined:

(i) heat source position,
(ii) heater power and

(iii) tube length.

For each of these control parameters, we will examine the effect of the amplitude,
using the amplitude-dependent expressions for τ , n0 and n1, given in (4.4)–(4.6). The
values of the constants τ0, τ2, g0 and g1 in these equations, which characterise the
heat release, are kept fixed throughout the paper: τ0 = 5× 10−3 s, τ2 = 4.4× 10−3 s,
g0= 1.4 and g1= 0.3. We will limit our study to just the first mode, m= 1, and ignore
the effect that any higher modes might have. We make this simplification because
an isolated mode provides the most basic scenario and will give basic understanding.
It will also allow us to separate the effects observed in a nonlinearly driven mode
from those due to mode coupling (which we plan to study in a separate paper).
Our results will be presented in the form of stability maps, depicting regions of
stability and instability in the plane formed by the amplitude and one of the three
control parameters listed above. We will show a large amplitude range, from zero to
twice the mean flow velocity; this allows us to illustrate clearly the trends in stability
behaviour as the amplitude increases. Of course, in most practical combustion systems,
the maximum amplitude is below the value of the mean flow velocity.

We will consider two types of burner, characterised by different boundary conditions.
One is a Rijke tube, which has open ends at x= 0 (inlet) and x=L (outlet), described
by reflection coefficients R0 = −1 and RL = −1. The other burner is a quarter-wave
resonator, with a closed end at x= 0 and an open end at x=L, described by reflection
coefficients R0= 1 and RL=−1. These are idealised cases, where there are no losses
of acoustic energy at the inlet or outlet. The reason for this choice of boundary
conditions is to separate the effect of losses at the boundaries from the dependence
of the stability behaviour on the control parameters under study.

6.1. Dependence on the heat source position
Figure 2 shows the stability map as a function of heat source position xq and
amplitude A/Ū. The tube length is L = 2 m, and the heater power is K = 3 ×
105 W s kg−1. The mean temperature is uniform throughout the tube, T̄1= T̄2= 304 K
(room temperature), and the corresponding speed of sound is c1 = c2 = 350 m s−1.
Figure 2(a) shows the results for the Rijke tube, and figure 2(b) shows those for
the quarter-wave resonator. The grey/white areas denote, respectively, the regions in
which the system is unstable/stable.

A well-known feature of a Rijke tube is that it is unstable if the heat source is in
the upstream half of the tube, and stable if it is in the downstream half (see e.g. § 6.2
in Dowling & Ffowcs Williams (1983)). The position of this transition is determined
by the point along the tube axis where the phase difference between pressure and
velocity changes from π/2 to −π/2. The time lag also plays a role. The stability
behaviour described above occurs only for time lags in the range 0<τ < T1/2, where
T1 is the oscillation period of the first mode. For time lags in the range T1/2<τ <T1,
the pattern is the other way round: the region of stability is in the upstream half, and
instability in the downstream half (this can be shown with a simple analysis based on
Rayleigh’s criterion (see e.g. Raun et al. 1993)).
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FIGURE 2. Stability maps depicting the dependence on heat source position xq and on
(non-dimensional) amplitude A/Ū. Unstable regions are shaded in grey; stable regions are
white. Within an unstable region, the growth rate Im(Ω1) has a maximum at a point near
the centre (not shown) and tends to zero as the edge of an instability region is approached.
The mean temperature is uniform, T̄1 = T̄2 = 304 K. The combustor has length L= 2 m
and heater power K = 3× 105 W s kg−1.

With these features in mind, it is straightforward to interpret the results shown in
figure 2(a). The vertical transition line at xq= L/2 is due to the phase jump between
pressure and velocity. The alternating regions of stability and instability along the
amplitude axis are due to the fact that the time lag τ increases with amplitude (see
(4.4)). This increase is extensive: for small amplitudes, τ is a small fraction of the
oscillation period, but it grows to more than twice the oscillation period for large
amplitudes. Alternating regions of stability and instability have also been found by
Heckl (2015) for a matrix burner with an amplitude-dependent time lag.

The stability behaviour for the quarter-wave resonator is shown in figure 2(b). The
vertical transition line is absent here because the phase difference between pressure
and velocity is uniform along the whole length of the tube. There is a region of
stability at low amplitudes, followed by a region of instability at higher amplitudes.
As in the case of the Rijke tube, this is due to the amplitude dependence of the time
lag. These regions are wider along the amplitude axis here because the oscillation
period of the first mode is greater.

If the system is at a point in an unstable (grey) zone in figure 2(a) or 2(b), the
perturbation amplitude grows until the border with a stable zone is reached. On the
other hand, if the system is in a stable (white) zone, the amplitude drops down to the
border with the neighbouring unstable zone.

The curved interfaces along the top of the grey zones represent stable limit cycles:
any small variation of A/Ū from the interface will bring the perturbation back to the
original amplitude. The basin of attraction for such a limit cycle is the grey area below
it and the white area above it. The curved interfaces along the bottom of the grey
zones represent the basin boundaries (Strogatz 1994).

It is worth reiterating that we only present results for the ideal case where acoustic
losses are zero. Losses have a stabilising effect, so, if they are taken into account,
the regions of stability become larger at the expense of regions of instability. This
explains, for example, our prediction (contrary to experimental observation) that the
Rijke tube is unstable, even when the heater is located directly at the upstream
tube end.
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FIGURE 3. Stability maps depicting the dependence on heat source position xq and on
(non-dimensional) amplitude A/Ū. Unstable regions are shaded in grey; stable regions are
white. The mean temperature is uniform, T̄1= T̄2=380 K, which is higher than in figure 2.
The combustor has length L= 2 m and heater power K = 3× 105 W s kg−1.

The stability map for the Rijke tube becomes more fragmented if the mean
temperature is increased. Figure 3 shows an example for T̄1 = T̄2 = 380 K and
c1 = c2 = 390 m s−1. All other parameters are the same as for figure 2. The stable
zone on the bottom right in figure 2(a) has become divided into two parts: one close
to the transition line and one close to the outlet (see figure 3a). We will show in
§ 9 that this feature can be a cause of hysteresis when the heat source is moved
along the tube axis. The map for the quarter-wave resonator shows very little change
(see figure 3b).

A similar effect is observed if a temperature jump is introduced. Figure 4 shows
a case where T̄1 = 304 K, T̄2 = 460 K, c1 = 350 m s−1 and c2 = 430 m s−1. The
vertical transition line present in figures 2(a) and 3(a) at L/2 has moved towards the
inlet in figure 4(a). This is due to the discontinuity in mean temperature: the speed
of sound jumps from a lower to a higher value, and with it jumps the wavelength.
This leads to a shift in the position where the phase difference between pressure and
velocity changes from π/2 to −π/2. There are no qualitative changes in the map of
the quarter-wave resonator (see figure 4b).

The effect of an increase or jump in mean temperature can be explained as follows.
An increase in mean temperature leads to an increase in the eigenfrequencies and
a decrease in the corresponding oscillation periods (T1 for the first mode). As we
mentioned earlier in this section, there is a critical time lag at τ =T1/2; there a switch
occurs from stability to instability (or vice versa). The fragmentation of the stability
maps in figures 3 and 4 is due to the reduction of the critical time lag, which in turn
is due to the increase in mean temperature.

6.2. Dependence on tube length
In some combustors it is possible to tune the tube by varying its length (see e.g.
Evesque, Dowling & Annaswamy 2003; Noiray et al. 2008). We therefore consider
the tube length L as control parameter in our study, and present stability maps to show
its effects in the range L = 0.3, . . . , 2 m. The heat source is kept fixed at position
xq= 0.1 m. The parameters characterising the (amplitude-dependent) heat release rate
have the same values as in § 6.1. The mean temperature is 380 K and is uniform.
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FIGURE 4. Stability maps depicting the dependence on heat source position xq and on
(non-dimensional) amplitude A/Ū. Unstable regions are shaded in grey; stable regions are
white. The mean temperature jumps at xq from T̄1= 304 K to T̄2= 460 K. The combustor
has length L= 2 m and heater power K = 3× 105 W s kg−1.

0.5 1.0

Rijke tube

1.5 2.0
0

0.5

1.0

1.5

2.0

0.5 1.0

Quarter-wave resonator

1.5 2.0
0

0.5

1.0

1.5

2.0(a) (b)

L (m) L (m)

FIGURE 5. Stability maps depicting the dependence on tube length L and on
(non-dimensional) amplitude A/Ū. Unstable regions are shaded in grey; stable regions are
white. The mean temperature is uniform T̄1 = T̄2 = 380 K. The heat source is located at
xq = 0.10 m; the heater power is K = 3× 105 W s kg−1.

Figure 5(a) shows the stability map for the Rijke tube, while figure 5(b) shows that
of the quarter-wave resonator.

We observe that for both types of tube the stable/unstable zones have the shape of
a curved band, whose thickness and curvature change smoothly with the tube length.
There are more stability/instability bands in the map for the Rijke tube than in the
map for the quarter-wave resonator.

The stability map shown in figure 5(b) corresponds directly to that found
experimentally by Noiray et al. (2008) for a quarter-wave resonator with a flame that
releases heat as described in § 4. The qualitative agreement is good at low amplitudes,
but not for amplitudes above approximately 0.2. Put in nonlinear dynamics terms, we
predict the subcritical Hopf bifurcation point correctly, but fail to capture the fold
point. This discrepancy was explained by Heckl (2015) and is not important for the
purposes of the current paper. (It is due to the fact that our description of the heat
release rate effectively ignores the low-pass behaviour of the measured FDF).
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FIGURE 6. Stability maps depicting the dependence on the heater power K and on
(non-dimensional) amplitude A/Ū. Unstable regions are shaded in grey; stable regions
are white. The mean temperature jumps at xq from T̄1 = 304 K to T̄2 = T̄1 + 1T ,
where the temperature increase 1T depends on the heater power as given by (6.1), with
cp=1010 J kg−1 K−1. The heat source is located at xq=0.10 m; the combustor has length
L= 2 m.

6.3. Dependence on the heater power
The constant K in our model for the heat release (see (4.2)) is the heater power (per
mass flow rate); we treat it as an independent parameter. In the following we will
investigate how it influences the stability behaviour of the Rijke tube and the quarter-
wave resonator. The tube length is fixed, L= 2 m. The parameters characterising the
(amplitude-dependent) heat release rate have the same values as in § 6.1.

We now take into account that the jump in mean temperature is caused by the heat
source and is given by (Sonntag, Borgnakke & van Wylen 2003, § 5.6)

1T = Q̄
cpSŪρ̄

, (6.1)

where Q̄ is the mean heat release, related to K by (4.3), and cp is the heat capacity for
constant pressure. Two different heat source positions will be considered, xq= 0.10 m
and xq=0.50 m, in order to have a complete overview of the stability changes induced
by varying K.

The maps for xq= 0.10 m are shown in figure 6, and the maps for xq= 0.50 m are
shown in figure 7. Panels (a) of these figures are for the Rijke tube and panels (b)
are for the quarter-wave resonator. The regions of stability/instability tend to have the
shape of bands, sloping downwards towards the right.

We observe that the quarter-wave resonator tends to be more unstable for higher K
values. Comparing figures 6(b) and 7(b), we also observe that the heat source position
makes very little difference. This is as expected from § 6.1, where we found that the
stability behaviour of the quarter-wave resonator has only a weak dependence on the
heat source position.

For the Rijke tube, there are again more regions of stability/instability than for
the quarter-wave resonator, and, as a consequence, more variation in the stability
behaviour can be expected. We illustrate this by comparing figures 6(a) and 7(a). An
increase in heater power tends to destabilise the system (for small amplitudes) if the
heat source is close to the upstream end (see figure 6a, where xq = 0.1 m), but not
if it is a little further downstream (see figure 7a, where xq = 0.5 m).
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FIGURE 7. Stability maps depicting the dependence on the heater power K and on
(non-dimensional) amplitude A/Ū. Unstable regions are shaded in grey; stable regions
are white. The mean temperature jumps at xq from T̄1 = 304 K to T̄2 = T̄1 + 1T ,
where the temperature increase 1T depends on the heater power as given by (6.1), with
cp= 1010 J kg−1 K−1. The heat source is located further downstream than in figure 6, at
xq = 0.50 m; the combustor has length L= 2 m.

Gopalakrishnan & Sujith (2014) have performed experimental studies, where they
used the heater power, and also the heater position, in a Rijke tube as control
parameter and found a subcritical Hopf bifurcation, as well as a fold bifurcation.
The Hopf bifurcation is predicted correctly by our approach, but the fold point is
missing. This discrepancy is similar to that observed in § 6.2 and is due to the same
reason: we have used a generic FDF, and not one that accurately describes the FDF
in the experimental set-up. In addition, losses are not taken into account, as discussed
in § 6.1.

7. Frequency shift

As we pointed out in § 5.2, thermoacoustic feedback causes a shift in the modal
frequencies, i.e. the real part of ωm generally differs from that of Ωm. In the following
we will show that the shift depends on the system parameters and on the perturbation
amplitude. We again consider mode m= 1 of the Rijke tube and of the quarter-wave
resonator, and display the frequency values by a contour map in the plane of the
parameters K and A/Ū. Figure 8 shows the real part of ω1; this is obviously constant
with respect to amplitude. The real part of Ω1, however, shown in figure 9, is clearly
dependent on amplitude, and this becomes more pronounced with increasing heater
power.

Comparing the contour plots for Reω1 and ReΩ1, we see that the frequency shift
can be positive, negative or zero. The points where Ω1=ω1 lie on a curve (not shown
here), which is unrelated to any of the curved interfaces between regions of stability
and instability in figure 6. The frequency shift is caused by the thermoacoustic
feedback. Here, the thermoacoustic feedback is amplitude-dependent (through the
heat release law described in § 4), and therefore the heat-driven frequencies become
amplitude-dependent. The shifts in the real part (oscillation frequencies) are not as
dramatic as the shifts in the imaginary part (growth rate), but they are nevertheless
important: they are particularly relevant for elaborate combustion systems, which have
components that are prone to resonance excitation.
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FIGURE 8. (Colour online) Contour plots showing the natural frequency Reω1 as
a function of heater power K and the (non-dimensional) amplitude A/Ū. The mean
temperature jumps at xq from T̄1= 304 K to T̄2= T̄1+1T , where the temperature increase
1T depends on the heater power as given by (6.1), with cp= 1010 J kg−1 K−1. The heat
source is located at xq = 0.10 m; the combustor has length L= 2 m.
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FIGURE 9. (Colour online) Contour plots showing the heat-driven frequency ReΩ1 as
a function of heater power K and the (non-dimensional) amplitude A/Ū. The mean
temperature jumps at xq from T̄1= 304 K to T̄2= T̄1+1T , where the temperature increase
1T depends on the heater power as given by (6.1), with cp= 1010 J kg−1 K−1. The heat
source is located at xq = 0.10 m; the combustor has length L= 2 m.

8. Validation

We validate our stability maps with the iterative calculation of the time evolution
described in § 5.1. Starting from a specific point in the map, we expect an oscillation
whose amplitude decreases/increases with time if the starting point was in a
stable/unstable zone. Likewise, we expect an oscillation with constant amplitude
if the starting point was at an interface representing a stable limit cycle.

We performed the validation for many points in the stability map and for many
parameter combinations (xq, L, K), and in every case the results from the time
evolution confirmed the results in the map. An example is shown in figure 10(a),
where the time history of the acoustic velocity in a Rijke tube is shown; the starting
point of the iteration was the point xq = 1.47 m, A/Ū = 0.01 in the stability map
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FIGURE 10. (Colour online) Acoustic velocity in the Rijke tube: (a) the time evolution,
and (b) the frequency spectrum. The heat source is located at xq = 1.47 m, and the
initial perturbation amplitude is A/Ū= 0.01. The other parameters are as in figure 4: the
mean temperature jumps at xq from T̄1= 304 K to T̄2= 460 K; the combustor has length
L= 2 m and heater power K = 3× 105 W s kg−1.

shown in figure 4(a). The time history clearly shows the amplitude growth after the
initial velocity perturbation, followed by the limit cycle. This corresponds to a point
in the stability map undergoing a vertical shift, until it reaches the upper boundary
of the unstable zone.

The time evolution also gives the frequency of the heat-driven oscillation. In order
to illustrate this, we calculated the frequency spectrum associated with figure 10(a);
this is shown in figure 10(b). There is a sharp peak at 565 s−1; this value agrees with
the analytical result ReΩ1 = 565 s−1 found from (5.7).

The corresponding natural frequency, i.e. the frequency without thermoacoustic
feedback, is distinctly different: Reω1= 596 s−1. This is an example of the frequency
shift resulting from thermoacoustic feedback, discussed in § 7.

9. Hysteresis
Some features in the stability maps shown in §§ 6.1–6.3 indicate that there is

potential for hysteretic behaviour when a certain control parameter is varied. We will
study this now in more detail, based on the iterative calculation of time histories
as described in § 5.1. Two control parameters will be considered: the heat source
position xq and the tube length L. We will vary them by increasing and subsequently
decreasing them (or vice versa).

9.1. Heat source position as control parameter
We will illustrate the procedure for the case where we move the heat source from the
inlet to the outlet and then back to the inlet:

(1) We pick a heat source position close to the inlet, e.g. the position xq1 = 0.01 m,
and a small initial perturbation amplitude, e.g. A0/Ū=0.01. We then calculate the
time evolution for many cycles until the amplitude reaches saturation (in general
10 s will be sufficient). We register the amplitude A1/Ū of the perturbation at
saturation.

(2) We move the heat source position to the right by a small distance 1x and
continue to calculate the time evolution for the new position, xq2 = xq1 + 1x.
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FIGURE 11. (Colour online) Hysteresis in the stability map of the Rijke tube with
heater position xq as control parameter. The map is the bottom right section of the
map in figure 4(a) and has the same parameters (T̄1 = 304 K, T̄2 = 460 K, L = 2 m,
K = 3 × 105 W s kg−1). Stable regions (white) are labelled Z1, Z3 and Z4; the unstable
region (grey) is Z2. The dashed green line shows the left-to-right path (indicated by
green arrows); the solid blue line shows the right-to-left path (indicated by blue arrows).
Hysteresis is indicated by the green/blue arrows when moving the heat source from the
outlet to xq = 0.9 m (green arrows) and then back to the outlet (blue arrows).

The initial perturbation amplitude for this calculation is A1/Ū. Once saturation
is reached, we again register the velocity amplitude A2/Ū of the perturbation at
saturation.

(3) We repeat step 2 until the heat source position reaches the outlet of the tube, and
record the saturation amplitude for each position, thus obtaining an array of N
amplitude values.

(4) Next we repeat the calculation, steps 1–3, but move the heat source in the
opposite direction, from the outlet to the inlet. At the point of reversal, the
amplitude is equal to the AN/Ū value obtained for the last heater position xN
of step 3. We proceed with the iteration for heater positions xqn = xqn−1 − 1x,
recording An/Ū at each step.

The same procedure can be applied when moving from an arbitrary starting point xi
to a point xj, and then back from xj to xi. Various initial values and control parameter
ranges will be chosen in order to establish whether hysteretic behaviour occurs.

A case is shown in figure 11, which corresponds to the stability map in figure 4(a).
The area shaded in grey shows the region of instability on the bottom right of
figure 4(a) (note that here we display only a part of the stability maps in § 6.1:
xq = 0.9, . . . , 2 m, A/Ū = 0, . . . , 1.6). The time history calculation started with the
heat source at the outlet end of the tube, and the source was then moved towards
the inlet end. The dashed green line in figure 11 shows the path (right to left) in the
stability map. Just before reaching the point xq = 0.9 m, the movement of the source
is reversed, from left to right; the corresponding path is shown by the solid blue line.
The iteration calculating the time history simply continues at the point of reversal,
i.e. no new initial conditions are introduced.

The paths labelled by the green and blue arrows in the stability map are clearly
different, indicating that hysteresis is present. We now explore this in more detail
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FIGURE 12. (Colour online) Hysteresis in the stability map of the Rijke tube (a) and
quarter-wave resonator (b) with combustor length L as control parameter. The maps are
the same as in figure 5 and have the same parameters (T1 = T2 = 380 K, xq = 0.10 m,
K = 3 × 105 W s kg−1). The dashed green line shows the backward path (indicated by
green arrows); the solid blue line shows the forward path (indicated by blue arrows).

by looking at the individual regions of stability and instability as they are crossed
or skirted by the paths. If we start from a point in the stable region Z3 and move
the heat source backwards from the outlet, the system is stable until xq = 1.49 m.
After this point the system enters the unstable region Z2. The amplitude then grows
until it reaches the interface with zone Z4. This represents a stable limit cycle and
further decrease of xq leads the system along this interface. However, if we now
reverse the direction of the heat source before reaching the vertical transition line at
xq = 0.90 m, and move it back towards the outlet, the system will not re-enter the
stable zone Z3 but will continue to follow the interface until the outlet, performing
stable limit cycle oscillations. The same kind of behaviour is observed if the heat
source is first moved forwards, starting from a point in the stable region Z1, and then
backwards towards the inlet before reaching xq = 1.49 m. This is in exact qualitative
agreement with the experimental observations by Gopalakrishnan & Sujith (2014).
There are disagreements with other aspects of their observations, in particular the fold
bifurcation observed by them is not predicted. This discrepancy is due to our choice
of heat release law, which is probably dissimilar from the one in their experiment.

We note that the size of the zones Z1 and Z3 determines the extent of the hysteresis.
This can be manipulated by varying the heater power K. In fact it is possible, by
suitable choice of K, to suppress hysteresis altogether, without restricting the range of
positions xq.

9.2. Tube length as control parameter
We can apply the four-step procedure described in § 9.1 to study the variation of the
tube length, and increase/decrease L by small steps 1L. The results are shown in
figure 12(a,b) and correspond directly to figure 5(a,b). Again, the areas shaded in
grey indicate the regions of instability, the solid blue lines mark the forward direction
(left to right), and the dashed green lines mark the backward direction (right to left).

We note that if we decrease the tube length from L = 2 m to the stable interval
just beyond L= 0.5 m, and subsequently increase it again from there to L= 2 m, the
path followed by the system in the stability map is not the same. A wide hysteresis
is present, both for the Rijke tube and for the quarter-wave resonator. However, we
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observe from the stability maps that it is possible to avoid hysteresis by limiting the
tube length to the range L= 1 m, . . . , 2 m (assuming the initial perturbation is small).

The same type of calculation can be made for decreasing/increasing the heater
power K, instead of the tube length, and the results are quite similar (not shown
here). Again, hysteresis can be avoided by restricting the K values to a range that
keeps the path in the first stable zone of the stability map. We note that for the case
shown in the map of figure 7(a) for a Rijke tube (with xq = 0.5 m and L = 2 m),
hysteresis cannot occur.

A thermoacoustic system that is linearly stable can be launched into a state where it
performs self-sustained oscillations if it is excited by a large enough impulse. This is
another nonlinear phenomenon and has been observed in practical combustion systems
(see e.g. Juniper 2011). Our predicted stability maps give direct information on the
amplitude levels that trigger self-sustained oscillations, and this information agrees
qualitatively with the predictions by Juniper.

10. Conclusions
We have described a Green’s function approach to model thermoacoustic oscillations

and hysteresis in two 1D systems: a Rijke tube and a quarter-wave resonator. The
stability analysis was performed in two ways:

(1) Derivation of a characteristic equation for the individual modes in the presence
of thermoacoustic feedback. This equation was solved with the Newton–Raphson
root-finding algorithm to obtain the complex heat-driven frequencies; their real
part gives the frequency of the oscillation, and the imaginary part gives the
stability behaviour. This method allows the identification of the attractors of
the system (limit cycles) as a function of different parameters. It also gives the
triggering amplitudes, as well as the frequency shift induced by thermoacoustic
feedback.

(2) Derivation of an integral equation governing the time history of the acoustic
field. This was solved by numerical iteration to give explicit information on any
hysteresis that may be present.

Ours is the first time-domain study where a system parameter is varied during
the calculation of the time history. We have shown that hysteresis occurs if any of
the three control parameters (heat source position, tube length and heater power) is
increased and subsequently decreased. For the heat source position, our hysteresis
prediction is coherent with the experimental observations on a horizontal Rijke
tube with low-Mach-number flow. Our work thus represents a major step towards
developing analytical models for experiments where a system parameter is varied and
nonlinear transitions are observed.

The Green’s function is a linear concept. One may therefore question our approach
to tackle nonlinear problems with it. The explanation lies in the source of the
nonlinearity, which is in the thermoacoustic feedback. The acoustic waves themselves
are regarded as linear, and it is therefore justified to describe them with a Green’s
function.

Our approach can be extended in various ways:

(1) Extension in terms of combustor geometry. In this study, we have considered a
basic combustor geometry: a uniform tube with open or closed ends, and a mean
temperature inside the tube that was either uniform or piecewise uniform (cold
upstream and hot downstream of the heat source). Our model can be extended
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so that it applies to a typical laboratory burner, which features specific end
conditions, a localised change in cross-sectional area, and/or a localised obstacle
blocking the flow.

(2) Extension with a network approach. Our method can be extended further to more
complicated geometries by modelling each element of the combustion system.
This can be done by using experimental data or by performing a few short CFD
simulations. Once the response function of each element is known, the Green’s
function method can then be used for a parametric study.

(3) Extension in terms of the model for the heat source. For the thermoacoustic
feedback, we have assumed an amplitude-dependent relationship between the heat
release rate and the flow velocity (including a time-lag term and a direct-feedback
term). Our approach is not limited to such a quasi-linear heat release law, but
works more generally, as long as the heat release rate is given as a function
(linear or nonlinear) of the acoustic velocity. This function might come from an
analytical model for the flame, from experiments, or from numerical simulations.

(4) Extension to multiple modes. In this article we have considered the case where
the modes do not interact and a single mode can be treated in isolation. Our
Green’s function method can be extended to include several interacting modes,
and this will be treated in a future paper.

(5) Extension to include losses. In this study, we have presented stability predictions
for the case where there are no acoustic losses. Losses at the combustor ends
can be simulated with the current model by suitable choice of the reflection
coefficients R0 and RL. Our predictions for lossy ends (not shown in this paper)
confirm the general expectation that losses have a stabilising effect, reducing the
size of the unstable zones in the stability maps.

In order to operate a combustion system safely, it is necessary to know its stability
boundaries for the conditions under which it is expected to operate. Our Green’s
function approach provides this kind of information fast and with a minimum of
numerical effort: it takes just a few seconds (on a standard PC or laptop) to produce
a stability map, while a time history takes between 30 s and 10 min to calculate,
depending on the number of iteration steps required. Although our predictions involve
a degree of approximation, they are nevertheless very useful for guiding experimental
and numerical studies: experiments to find the stability boundaries based on trial
and error are risky and expensive. With a rough idea where these boundaries are,
it is much easier to find them and determine them accurately. Finding the stability
boundaries from a numerical code (such as CFD, LES or DNS) requires a lot
computational effort. Our approach could complement simulations, which are not
suited for parameter studies, by providing rough information on the relevant parameter
ranges.

The Green’s function is a mathematical tool, but it also has a very concrete physical
meaning: it is the response of a burner to an impulse excitation. This physical
interpretation is very valuable. We have exploited it in this paper to describe a burner
in terms of actual physical modes (with and without thermoacoustic feedback), rather
than in terms of the idealised modes that tend to be used in connection with the
Galerkin method. The physical insight gained with our approach is fundamental for
the understanding and control of thermoacoustic feedback in combustors.

Other types of instability involving a resonator can be modelled by our Green’s
function approach. This has been done for friction-driven oscillations, such as
the bowed string (McIntyre & Woodhouse 1979) and curve squeal (Heckl 2000).
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Friction-driven oscillations are an instability generated by the nonlinear feedback
between the friction force and the relative velocity of two solid bodies in contact.
We are optimistic that there are further cases of unstable oscillations that would be
amenable to modelling with our approach.
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Appendix A. Derivation of (5.7) and (5.8)
The equations for the heat-driven frequencies Ωm and amplitudes um can be obtained

with a procedure first used by Heckl (2000) to analyse a friction-driven wheel. We
combine the equations (4.2) and (5.6) in order to obtain a modal expression for the
heat release:

q(t)=K

[
n1

∞∑
m=1

(ume−iΩm(t−τ) + u∗meiΩ∗m(t−τ))− n0

∞∑
m=1

(ume−iΩmt + u∗meiΩ∗mt)

]
. (A 1)

Also, we rewrite the integral governing equation (3.4), using the modal expression
(2.2) for the Green’s function,

uq(t) = −γ − 1
2c2

∫ t

t′=0
q(t′)

∞∑
n=1

(Gne−iωnt+G∗neiω∗n t) dt′

+ 1
2c2

∞∑
n=1

[(iωnϕ0 + ϕ′0)Gne−iωnt + (−iω∗nϕ0 + ϕ′0)G∗neiω∗n t], (A 2)

where we have used the abbreviation (5.4). We then substitute in (A 2) for q(t) with
(A 1), and for uq(t) with (5.6). This leads to the following equation:

∞∑
m=1

(ume−iΩmt + u∗meiΩ∗mt)

= Kn0(γ − 1)
2c2

∫ t

t′=0

∞∑
n=1

(Gne−iωn(t−t′) +G∗neiω∗n(t−t′))

∞∑
m=1

(ume−iΩmt′ + u∗meiΩ∗mt′) dt′

− Kn1(γ − 1)
2c2

∫ t

t′=0

∞∑
n=1

(Gne−iωn(t−t′) +G∗neiω∗n(t−t′))

×
∞∑

m=1

(ume−iΩm(t′−τ) + u∗meiΩ∗m(t′−τ)) dt′

+ 1
2c2

∞∑
n=1

[(iωnϕ0 + ϕ′0)Gne−iωnt + (−iω∗nϕ0 + ϕ′0)G∗neiω∗n t]. (A 3)

We distinguish between the heat-driven mode, which has frequency Ωm and
amplitude um, and the natural mode, which has frequency ωn and amplitude Gn
(x derivative).
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The two integrals on the right-hand side of (A 3) can be combined and written more
compactly as

−K(γ − 1)
2c2

∫ t

t′=0

{∑
m,n

[Gnumei(ωn−Ωm)t′−iωnt(n1eiΩmτ − n0)

+G∗nume−i(ω∗n+Ωm)t′+iω∗n t(n1eiΩmτ − n0)+Gnu∗mei(ωn+Ω∗m)t′−iωnt(n1e−iΩ∗mτ − n0)

+G∗nu∗mei(Ω∗m−ω∗n)t′+iω∗n t(n1e−iΩ∗mτ − n0)]
}

dt′. (A 4)

After evaluation of the integral in expression (A 4), this becomes

K(γ − 1)
2c2

∑
m,n

{
(−n1eiΩmτ + n0)

[
Gnum

ei(ωn−Ωm)t − 1
i(ωn −Ωm)

e−iωnt +G∗num
ei(−ω∗n−Ωm)t − 1
i(−ω∗n −Ωm)

e−iω∗n t

]
+ (−n1e−iΩ∗mτ + n0)

[
Gnu∗m

ei(ωn+Ω∗m)t − 1
i(ωn +Ω∗m)

e−iωnt +G∗nu∗m
ei(−ω∗n+Ω∗m)t − 1
i(−ω∗n +Ω∗m)

eiω∗n t

]}
. (A 5)

We insert this into (A 3) and rearrange to group the terms with factors ume−iΩmt,
u∗meiΩ∗mt, Gne−iωnt and G∗neiω∗n t. The result is

∞∑
m=1

(ume−iΩmt + u∗meiΩ∗mt)

=
∞∑

m=1

ume−iΩmt K(γ − 1)
2c2

(−n1eiΩmτ + n0)

∞∑
n=1

[
Gn

i(ωn −Ωm)
+ G∗n

i(−ω∗n −Ωm)

]

+
∞∑

m=1

u∗meiΩ∗mt K(γ − 1)
2c2

(−n1e−iΩ∗mτ + n0)

∞∑
n=1

[
Gn

i(ωn +Ω∗m)
+ G∗n

i(−ω∗n +Ω∗m)
]

+
∞∑

n=1

Gne−iωnt K(γ − 1)
2c2

∞∑
m=1

[
(−n1eiΩmτ + n0)

(−um)

i(ωn −Ωm)

+ (−n1e−iΩ∗mτ + n0)
(−u∗m)

i(ωn +Ω∗m)
]

+
∞∑

n=1

G∗neiω∗n t K(γ − 1)
2c2

∞∑
m=1

[
(−n1eiΩmτ + n0)

(−um)

i(−ω∗n −Ωm)

+ (−n1e−iΩ∗mτ + n0)
(−u∗m)

i(−ω∗n +Ω∗m)
]

+ 1
2c2

∞∑
n=1

[Gne−iωnt(iωnϕ0 + ϕ′0)+G∗neiω∗n t(−iω∗nϕ0 + ϕ′0)]. (A 6)

This equation is satisfied if the coefficients of ume−iΩmt, u∗meiΩ∗mt, Gne−iωnt and G∗neiω∗n t

are equal on either side of the equation. Equating the coefficients of ume−iΩmt gives

∞∑
n=1

[
Gn(n1eiΩmτ − n0)

i(ωn −Ωm)
− G∗n(n1eiΩmτ − n0)

i(ω∗n +Ωm)

]
=− 2c2

K(γ − 1)
, m= 1, 2, . . . . (A 7)
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This is a set of nonlinear equations for the heat-driven frequencies Ωm, m= 1, 2, . . . .
They are uncoupled in the sense that the solution for a particular mode m does not
depend on the Ω value of another mode. However, there is coupling between the
modes in the sense that the solution for Ωm depends on the frequencies ωn and
amplitudes Gn of the natural modes present in the system. Equating the coefficients
of u∗meiΩ∗mt gives the complex conjugate of (A 7). Equating the coefficients of Gne−iωnt

and G∗neiω∗n t gives, respectively,

∞∑
m=1

[
um
(−n1eiΩmτ + n0)

i(ωn −Ωm)
+ u∗m

(−n1e−iΩ∗mτ + n0)

i(ωn +Ω∗m)
]
= iωnϕo + ϕ′0

K(γ − 1)
(A 8a)

and

∞∑
m=1

[
um
(−n1eiΩmτ + n0)

i(−ω∗n −Ωm)
+ u∗m

(−n1e−iΩ∗mτ + n0)

i(−ω∗n +Ω∗m)
]
= −iω∗nϕo + ϕ′0

K(γ − 1)
, (A 8b)

for n = 1, 2, . . . . Equation (A 8b) is the complex conjugate of (A 8a). These two
equations represent a linear set of equations for the unknowns um and u∗m.
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