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Inertial waves are observed in swirl burners, due to the acoustic waves crossing the swirl genera-
tors. These waves can significantly modify the flame response in terms of flame transfer function
because the propagation mechanisms are different for acoustic and inertial waves. Acoustic waves
propagate at the speed of sound, whereas inertial waves travel with convection. Small changes in
burner configuration may convert the constructive superposition of flame responses to a destruc-
tive one, or vice versa, which may change the flame transfer function. Therefore, it is necessary
to identify the propagation mechanisms correctly. The aim of this paper is to re-examine the
assumption that inertial waves travel with convection. An analytical approach is combined with
numerical simulations to determine and validate the propagation speed with emphasis on the im-
pact of different swirl strengths.

1. Introduction

Lower emission of pollutants in gas turbines requires leaner fuel mixture for combustion process.
This increases the likelihood of occurrence of combustion instability, which is caused by a feedback
mechanism between acoustic waves and heat release rate fluctuations from the flame. In order to
design safer and more reliable gas turbines, it is necessary to investigate the interaction between
acoustic/hydrodynamic perturbation and flame dynamics.

Swirl burners are ubiquitous in combustion technology, because swirl promotes fuel/air mixing
and flame stabilization. This work focuses on inertial waves generated by acoustic waves that prop-
agate across the swirl generator. Inertial waves are understood to have a significant impact on the
dynamic response of swirl flames to flow perturbations.

Richards and co-workers [1, 2, 3] studied the effects of the swirl vane location on thermo-acoustic
stability. The sensitivity of the flame was credited to the phase lag between pressure and heat release
rate. A convective time lag model is introduced for the tangential velocity perturbations that are
generated at the swirler and propagate towards the flame front. In other words, overall flame response
is the superposition of responses to tangential velocity and acoustic perturbations.

Komarek and Polifke [4] confirmed this scenario and showed individual Flame Transfer Func-
tions (FTF) for the swirl waves and the acoustic axial velocity perturbations at burner mouth. The
phase difference between these FTFs is then used to investigate how strongly constructive / destruc-
tive superposition can strongly modulate the gain of the overall FTF. Palies et al. [5, 6] modeled
the generation and the propagation of these waves by the actuator disk theory by Cumpsty and Mar-
ble [7], where the tangential velocity perturbations are assumed to travel with convection. Kim and
Santavicca [8] also confirmed the interference mechanism by FTF measurements.
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However, it was noted already by Straub and Richards [3] that the convective time lag model
leads to poor agreement against experiments. Similarly, Polifke and co-workers [4, 9] argued that the
propagation speed of the swirl (inertial) waves differs from the convective speed.

The convective propagation assumption is scrutinized in this paper. Kerrebrock [10], Golubev and
Atassi [11], and Tam and Auriault [12] investigated the interaction mechanism between the acoustic
and inertial waves using space–time Fourier transformed linearized compressible Euler equations.
They found non-convective behavior of the inertial waves, which is not influenced strongly by the
compressibility in the range of Mach number 0.3.

In this work, an analytical expression for the inertial wave propagation is proposed by neglecting
the compressibility. Using space–time Fourier transformed linearized incompressible Euler equations,
an analytical description of the inertial wave propagation is proposed. Distinct modes appear, since
the inertial waves are dispersed. These distinct modes propagate faster and slower than the convective
speed. It is shown that the strength of the swirl affects the deviation from the convection. The
analytical approach is then validated against the CFD simulations using OpenFOAM.

In Sec. 2.1, the space–time Fourier transform is applied to advection equation. The same approach
is then applied to linearized Euler equations in Sec. 2.2 to investigate the inertial wave propagation.
In Sec. 3 a simple example is shown for a solid body rotation in a duct, where the inertial wave
propagation is quantified by a transfer function. Finally, in Sec. 4 the approach is validated against
CFD simulations with a non-linear incompressible Navier-Stokes solver by OpenFoam.

2. Theory

The cylindrical swirling flows in most burners are incompressible. The interaction between acous-
tic and hydrodynamic waves is negligible and both can be investigated separately. Linearized incom-
pressible Euler equations are employed in this work to describe the inertial wave propagation.

For all derivations there are common assumptions, i.e. the mean radial velocity being zero ūr =
0, the mean axial velocity being uniform ūz (r) = ūz, the flow being axisymmetric ∂ (.) /∂θ and
developed ∂ (.) /∂z.

The theory section is divided into two. In the first subsection, the assumption of the convective
propagation mechanism for tangential velocity perturbations is revisited. The space–time Fourier
transform is applied to advection equation. The propagation is quantified by a transfer function be-
tween the area averaged perturbations sampled at the upstream and downstream locations. In the
second subsection, same approach is applied to linearized Euler equations that govern inertial waves.

2.1 Propagation of convective perturbations

The axisymmetric linearized advection equation for the tangential velocity perturbations u′θ reads
as

∂u′θ
∂t

+ ūz
∂u′θ
∂z

= 0 , (1)

where (.)′ denotes perturbed and (̄.) mean quantities, u is velocity and (z, r, θ, t) are axial, radial and
tangential coordinates and time, respectively.

Although this equation can directly be solved in time domain, the space–time Fourier transforma-
tion (.)′ = (̂.) exp(−iωt+ ikz) is performed in order to be consistent with Sec. 2.2. This transforma-
tion leads to an algebraic equation as dispersion relation D (k, ω) = 0 that reads as

k (ω) = ω/ūz, (2)

where ω is the angular frequency and k is the axial wave-number. The perturbation in space–time
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domain can be reconstructed by inverse Fourier transform as

u′θ (z, t) =

∫ ∞

−∞

[
N∑
n=1

ûθ exp
(
ikn (ω) z

)]
exp (−iωt) dω , (3)

where N is the number of characteristic waves resulting from dispersion relation. For the advection
equation there is only one characteristic wave N = 1 with convective phase speed cp = w/k = ūz.

A transfer function T (ω) can be introduced to quantify the propagation. The area averaged tan-
gential velocity perturbation is measured at particular upstream ’zu’ and downstream ’zd’ positions
and used as input and output, respectively. The transfer function reads

T (ω) =

∫
ro

0
2πr
[∑N

n=1 ûθ,n exp(iknzd)
]
dr∫

ro

0
2πr
[∑N

n=1 ûθ,n exp(iknzu)
]
dr

. (4)

The input plane is chosen as zu = 0 without loss of generality. The transfer function for the
advection equation can be written as

T (ω) = exp

(
iωzd
ūz

)
, (5)

whose gain and phase are |T (ω) | = 1 and ∠T (ω) = ωzd/ūz, respectively (see Fig. 2 in Sec. 3).

2.2 Propagation of inertial waves

The linearized Euler equations in cylindrical coordinates read as

u′r
r

+
∂u′r
∂r

+
∂u′z
∂z

= 0 , (6)

∂u′z
∂t

+ūz
∂u′z
∂z

+ u′r
∂ūz
∂r

= −1

ρ

∂p′

∂z
, (7)

∂u′r
∂t

+ūz
∂u′r
∂z
− 2ūθu

′
θ

r
= −1

ρ

∂p′

∂r
, (8)

∂u′θ
∂t

+ūz
∂u′θ
∂z

+ u′r
∂ūθ
∂r

+
u′rūθ
r

= 0 , (9)

where p is pressure. Other variables are defined in Sec. 2.1. Space–time Fourier transformed equations
can be written as a second order ODE for ûr as

d2ûr
dr2

+
1

r

dûr
dr
− ûr

(
1

r2
+ k2 − 2k2ūθ

(w − ūzk)2 r2
∂ (ūθr)

∂r

)
= 0 . (10)

This equation requires prescribed mean tangential velocity ūθ(r). For particular cases such as solid
body rotation ūθ (r) = Kr, free vortex ūθ (r) = K/r or uniform tangential velocity ūθ (r) = K, the
analytical solution can be found.

Two boundary conditions are required for ûr (r), which define the dispersion relation D (k, ω) =
0. The phase speed cp corresponds to the propagation speed of the inertial waves. The propagation
can be quantified by the transfer function defined in Eq. (4).
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3. Illustrative example: Solid body rotation in a duct

For the ease of illustration, the analysis is carried out for a duct with radius of ro = 5 mm. The
uniform constant axial velocity profile is used ūz = 10 m/s. The tangential velocity is prescribed as
a solid body rotation ūθ (r) = Kr, where K = 2000 s-1. The corresponding Reynolds Number is
Re = 6667 lying in turbulent regime.

The symmetry condition at center is translated to a boundary condition ûr (0) = 0. Second
boundary condition ûr (ro) = 0 is from the impermeability condition at duct wall. The analytical
solution reads as

ûθ,n (r) =cnJ1 (Anr) + dnY1 (Anr) , (11)

ûr,n (r) =
ūzkn − ω

2Ki
[cnJ1 (Anr) + dnY1 (Anr)] , (12)

ûz,n (r) =
An (ūzkn − ω)

2Kkn
[cnJ0 (Anr) + dnY0 (Anr)] , (13)

p̂n (r) =− An (ūzkn − ω)2 ρ

2Kk2n
[cnJ0 (Anr) + dnY0 (Anr)] , (14)

where An = kn
√

4K2 − (ūzkn − ω)2/ (ūzkn − ω) and J and Y are the Bessel functions of first and
second kind, respectively. J and Y are orthogonal functions, which form complete solution.

Since Y1 goes to infinity at r = 0, the boundary condition ûr(0) = 0 cannot be satisfied unless the
coefficients of Y vanish dn = 0. Applying the second boundary condition ûr (ro) = 0, the dispersion
relation D (k, ω) can be formed as

J1 (Anro) = 0⇒ Anro = jn ,∀n ∈ N+ , (15)

where jn are the roots of Bessel function of first kind J1. Axial wave-numbers kn (ω) can be deter-
mined explicitly by solving fourth order polynomial. This indicates that for each n there exist four
axial wave-numbers that have the same mode shape. Two of them propagate upstream while one
grows and the other decays, which are assumed to be unphysical (see Sec. 3.1).

Other two waves are addressed as inertial waves and propagate downstream (neither growing nor
decaying) at different speeds, one is faster ’+’ and the other is slower ’−’ than the convection. In left
part of Fig. 1, the dispersion relation defined in Eq. (15) is represented. Roots indicate eigenvalues as
axial wave-numbers, where x-axis is the normalized phase velocity c∗p = ω/ (kūz) .
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Figure 1: Left: Second boundary condition ûr,n (r0) = 0 as a function of normalized phase speed
c∗p = ω/ (kūz) for ω = 100 rad/s, Uz = 10 m/s, K = 2000 s-1 and ro = 5 mm. Zeros corresponds to
the eigenvalues: ’+’ and ’−’ indicating faster and slower waves than convection c∗p = 1, respectively.
Middle: Normalized phase speeds for the first three modes including both ’+’ and ’−’ as a function
of normalized angular frequency ω∗ = ωzd/ūz. Right: The eigenvectors of tangential velocity per-
turbation component ûθ,n for the first three slower ’−’ modes. n = 1 ( ), n = 2 ( ), n = 3
( ).
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The normalized phase speed can be written explicitly as

c∗p,n = 1± 2K

ūz

ro√
k2r2o + j2n

, (16)

which shows the effect of the circulation strength K on the propagation of inertial waves. As circula-
tion strength increases, the deviation from convection increases too. The normalized phase speed as a
function of normalized angular frequency ω∗ = ωzd/ūz for the first three modes n = 1, 2, 3 is shown
in the middle part of Fig. 1. As n increases, the phase speed approaches the convective speed. More-
over, the phase speed depends on the angular frequency. At low frequencies the propagation deviates
from the convection the most. For high frequencies, both fast ’+’ and slow ’−’ propagation speeds
approach the convection. Additionally, the inertial waves are not only perturbations in tangential
velocity, but also in radial and axial directions. This is evident from Eqs. (11), (12) and (13).

The eigenvectors of the tangential velocity perturbation component ûθ,n related to three outermost
slower waves ’−’ are illustrated in the right part of Fig. 1 as a function of radius. Although the modes
corresponding to the faster waves ’+’ are not plotted, they are equal to the negative of the slower
wave modes. As n increases, the modes become more oscillatory.

3.1 Construction of boundary condition regarding number of characteristics

Linearized compressible Euler equations for perfect gas can be described by five field variables
[ρ′, p′, u′z, u

′
r, u
′
θ] and corresponding five transport equations. Related to the transport equations there

are five characteristic waves, namely two acoustic waves (propagating downstream and upstream),
the convective entropy wave and two inertial waves. The latter are studied in this paper.

Assuming the flow is incompressible, the energy equation is decoupled from the system of equa-
tions and therefore, the entropy wave is eliminated. The incompressible system is described by four
field variables [u′z, u

′
r, u
′
θ, p
′] and four partial differential equations. The type of pressure equation

changes from hyperbolic to elliptic. The non-local behavior of the elliptic equation modifies the na-
ture of the acoustic waves making their propagation speed infinite. The incompressible equations
have, therefore, only two inertial waves as characteristics, which contradicts Eq. (15) that has four
characteristics. In this paper, the upward propagating waves are postulated to be unphysical and
related to modified spurious acoustic waves.

In order to construct a well-posed problem, the boundary condition at inlet z = 0 should be
defined for each variable [u′z, u

′
r, u
′
θ, p
′]. As there exist only two characteristics, the variables cannot

be chosen freely, otherwise non-local waves (spurious acoustic waves) are triggered, which cannot
be described as space–time Fourier transform. However, in order to be consistent with the actuator
disk theory [5, 6, 7], a perturbation in tangential velocity ûθ = fθ (r) is imposed. Other components
of the velocity perturbation are set to zero and the pressure perturbation is set as Neumann boundary
condition.

For simplicity, the tangential velocity perturbation at the inlet is assumed as the first mode shape
fθ (r) = J1 (j1r/ro) shown with solid line in the right part of Fig. 1. Since Bessel functions form
an orthogonal basis, the modes other than n = 1 are not excited. In this case, the coefficients are
calculated as the following set of equations for ûθ, ûr, ûz respectively

1 =− c1+ + c1− + c1u , (17)

0 =− ūzk1+ − ω
2Ki

c1+ +
ūzk1− − ω

2Ki
c1− +

ūzk1u − ω
2Ki

c1u , (18)

0 =
A1+ (ūzk1+ − ω)

2Kk1+
c1+ +

A1− (ūzk1− − ω)

2Kk1−
c1− +

A1u (ūzk1u − ω)

2Kk1u
c1u , (19)

where subscript ”u” stands for the upward propagating growing wave. The upward propagating de-
caying wave is neglected, because in downstream direction, it acts as if the wave is growing, which
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ruins the transfer function. Since three characteristics are used for construction of perturbation, the
pressure boundary condition is neglected too. The resulting coefficients are frequency dependent and
can be approximated by c1+ ≈ −0.5, c1− ≈ 0.5 and c1u ≈ 0. It is straightforward to construct any
type of perturbation similarly, which can be expressed as a summation of Bessel function of first kind
J1.

The perturbation in space–time domain at a downstream location can be constructed by consider-
ing only inertial waves

u′θ(z, r, t) = J1

(
j1
r

ro

)∫ ∞
−∞

[
− c1+ exp (ik1+z) + c1− exp (ik1−z)

]
exp (−iωt) dω . (20)

3.2 Derivation of transfer function

The transfer function defined in Eq. (4) can be simplified as

T (ω) = −c1+ exp (ik1+zd) + c1− exp (ik1−zd) . (21)

In Fig. 2 the gain and the phase are plotted at downstream position zd = 3ro = 15mm with the
solid line ( ) and compared against the convective model with the dashed line ( ). The CFD
results are indicated with the ( ) symbol and explained in Sec. 4. In the first two columns, the slow
and fast modes are analyzed separately. Each mode independently shows a constant gain |T (ω) | = 1
and a phase deviating from the convective phase as expected. For fast mode, the phase is steeper than
the convection at low frequencies and becomes parallel for higher frequencies. This agrees well with
phase speeds shown in the middle part of Fig. 1, where the phase speeds approach the convective
speed as frequency increases. The similar arguments can be made for the slow mode. The complete
inertial wave propagation is described by the superposition of the two modes as shown in the third
column. The constructive superposition results in gain values around |T (ω) | ≈ 1 and the destructive
superposition results around |T (ω) | ≈ 0. The superposition in the phase results in almost convective
phase. This might be misleading, since the propagation is far from being convective.
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Figure 2: Comparison of the Bode plots for inertial wave ( ), convective wave ( ) and CFD
results ( ). First two columns show slower k−1 and faster k+1 modes, respectively and the third column
shows the combined mode.

The Fig. 3 shows the gain plots |T (ω) | for output locations, zd = 3ro = 15 mm and zd =
6ro = 30 mm. As the downstream position zd increases, more destructive superpositions exist and
the frequencies shift. This characteristic of inertial waves is very crucial for experiments and CFD
simulations of real swirl generators, where the source of the inertial wave is not well known. Since
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the tangential velocity perturbations measured at upstream location zu is the denominator in Transfer
Function T (ω), a destructive superposition results in T (ω) → ∞. This behavior is not observed in
the case presented in this paper, because the upstream reference position is located at inlet zu = 0,
where the perturbations are generated and there is no possibility for destructive superposition.
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Figure 3: Gain plot for zd = 3ro = 15mm ( ) and zd = 6ro = 30mm ( ).

4. Comparison against CFD results

The CFD simulations are performed for the same configuration as described in Sec. 3 using Open-
FOAM. The transient incompressible Navier-Stokes equations are solved using PIMPLE algorithm.
The slip wall boundary conditions are used to match the inviscid analytical approach. The tangential
velocity perturbations are generated at the inlet boundary condition by broad-band excitation. Then,
the transfer function is constructed by Wiener-Hopf inversion [13].

As shown in Fig. 2, a good agreement is achieved between CFD results and analytical model for
the low and moderate frequencies. For high frequencies, the CFD simulations show low pass behavior
due to the viscous dissipation, which is not present in the analytical approach. However, very high
frequencies are not relevant for the linear combustion dynamics. Therefore, those frequencies can be
neglected and reliable results can still be obtained.

5. Conclusion

In order to investigate the inertial wave propagation, space–time Fourier transformation is applied
to linearized incompressible Euler equations. The transformed equations are solved analytically as a
second order ODE, where infinite number of waves with phase speeds diverging from convection are
revealed. It is shown that the phase speed of the inertial waves depends on mean tangential velocity.
As mean tangential velocity increases, the deviation from convection increases too. By defining a
transfer function between tangential velocity perturbations at different locations, the inertial wave
propagation is compared against the convective propagation by considering a solid body rotation in
a duct. The analytical model is successfully validated against numerical simulations. The model can
be coupled with low order models for more reliable estimation of thermo-acoustic stability. It is also
possible to build a velocity perturbation model that can be used to study the impact of inertial waves
on the flame dynamics.
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