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Abstract

In analytical models of the propagation and generation of acoustic and en-
tropy waves across a premixed flame, the relations that couple upstream and
downstream flow variables often consider the flame as a discontinuity at rest.
This work shows how the model of a flame at rest can misrepresent the gen-
eration of entropy waves, and how it leads to paradoxical results concerning
the conservation of mass and volume flow rates across the flame. Such in-
consistencies can be resolved by taking into account the movement of the
flame in the coupling relations for flow perturbations. Analysis in a quasi-1D
framework shows that in the absence of perturbations in equivalence ratio,
the magnitude of the entropy waves generated across the flame are first order
in Mach number and derive from interactions between the upstream acoustics
and the mean heat release rate. For non-perfectly premixed flames, fluctu-
ations in equivalence ratio may generate perturbations in entropy of leading
order in Mach number. Furthermore, for the moving flame model conserva-
tion of volume flow rate across a passive, perfectly premixed flame appears
as a natural consequence of mass and energy conservation.

Keywords: kinematic balance; premixed flame; acoustic scattering; entropy
generation; volume consumption rate; heat release rate; mass flow
conservation; Mach number

1. Introduction

In lean combustion systems, one of the major challenges to technological
progress is thermo-acoustic instability. Such instabilities may be caused by
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fluctuations in pressure or velocity, i.e. acoustic disturbances, which impinge
on the flame, causing the heat release rate to become unsteady. Fluctuations
in heat release rate will in turn generate more acoustic disturbances, so that
a feedback-loop is established, which may result in self-excited instability.

Acoustic perturbations at a flame can also cause so-called “entropy waves”,
i.e. temperature inhomogeneities in the burnt gases that are transported
convectively. As Marble and Candel [1] have explained, when such inho-
mogeneities experience acceleration downstream of the flame (e.g. through
a nozzle), acoustic waves are generated in both upstream and downstream
directions from the zone of acceleration. The upstream propagating compo-
nent travels back into the combustion chamber, contributing to the acoustic
oscillations in the system. This mechanism can also trigger thermo-acoustic
instabilities, see [2–5].

According to Rayleigh [6], instabilities in a thermo-acoustic system can
occur, when thermal and acoustic disturbances interact constructively. There-
fore, understanding the mechanisms of acoustic and entropy waves generation
across the flame, and their propagation in the system is crucial for prediction
and control of the thermo-acoustic instabilities.

To predict system instabilities, the framework of low-order network mod-
els is widely employed [5, 7–13]. In this framework, a one-dimensional
thermo-acoustic system is represented as a network of acoustic elements,
each one characterized by its transfer matrix, which expresses the relations
between the flow perturbations in velocity u′, pressure p′ and entropy s′

upstream of the element to the perturbations downstream, see [14].
In an idealized treatment, such relations may be derived analytically from

the linearized conservation equations for mass, momentum and energy. The
effect of a heat source on the acoustic field may also be deduced from these
conservation equations. In this case, the analysis should describe the scat-
tering of acoustic waves by the temperature and density gradients that result

from mean heat release rate ¯̇Q, as well as account for the coupling between
the fluctuations of heat release Q̇′ and the acoustic perturbations1.

The configuration considered in the present paper is depicted in Fig. 1.
The heat source is regarded as a one-dimensional discontinuity. This is ap-
propriate if the heat source is compact, i.e. if both acoustic and entropy

1Here and in the following, overbars ¯. . . denote mean values, while primed quantities
. . .′ refer to fluctuations around the mean.
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wavelengths are much larger than the axial extent of the heat source. More-
over, it is often assumed that the heat source is fixed at position x̄f . A
derivation of thermo-acoustic coupling relations by analysis of the conserva-
tion laws for mass, momentum and energy as they apply for a compact heat
source at rest can be found in several prior studies, see e.g., [10, 15–17].
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Figure 1: A compact heat source in quasi-1D flow with flow perturbations u′, p′, ρ′ at
upstream (’1’) and downstream (’2’) locations, respectively. For a heat source at rest, the
velocity of the heat source in the laboratory frame us(t) = 0, thus the location of the
source, x̄f , is constant in time.

However, paradoxical conclusions may result from the thermo-acoustic
coupling relations for a heat source at rest. The first contradiction concerns
the production of entropy waves by a heat source. The coupling relations for a
heat source at rest imply that in general unsteady heat release Q̇′ 6= 0 should
result in the generation of entropy waves, i.e. s′ 6= 0 downstream of the heat
source, see [10, 18, 19]. However, in the case of a perfectly premixed flame
with homogeneous fuel/air premixture, the presence of significant entropy
waves (i.e. temperature inhomogeneities) downstream of the combustion
zone is difficult to justify physically, because in the case of adiabatic and
complete combustion, the temperature increase across the flame and thus
also the temperature downstream of the flame should be constant.

The second issue has been raised by Bauerheim et al. [17] for the case of
a passive flame (Q̇′ = 0) at rest, in the limit of vanishing mean flow Mach
number. In the absence of mean flow, the energy conservation equation
is reduced to conservation of volume flux, which implies that fluctuations of
upstream (”1”) and downstream (”2”) velocities be equal, u′1 = u′2. However,
this is in apparent contradiction with mass conservation, which for M = 0
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would seem to impose u′1ρ̄1 = u′2ρ̄2.
Bauerheim et al. [17] reexamined the quasi-1D conservation equations

and observed that acoustic and entropy perturbations are coupled. At zero
Mach number, a singularity in entropy is produced, which acts as an addi-
tional source term in the mass balance equation, which ”explains why mass
conservation of fluctuations is satisfied at non-zero Mach number while vol-
ume flow rate is conserved at zero Mach number” [17]. Thus the paradox is
resolved, but the conclusions that result from the mathematical arguments
are not easily reconciled with physical intuition.

For the two cases mentioned above, conclusions developed from linearized
conservation equations for mass and energy are either apparently contradic-
tory, or non-intuitive. This is rather unsatisfactory, since mathematical mod-
els should represent and clarify the actual physical problem. The physical
meaning of the interdependency among entropy waves generation, unsteady
heat release and mass flow conservation needs to be re-examined and contex-
tualized by revisiting the coupling relations and the underlying assumptions.

In this work, it will be shown how the issues described can be resolved by
relaxing the assumption that the heat source is at rest. Instead, the flame
front will be considered as a moving discontinuity, which implies that move-
ment of the heat source must be taken into account in the conservation equa-
tions. Equations which describe the propagation of small flow disturbances
across a moving heat source were first derived by Chu [20, 21]. Although the
moving flame model has been used since in many studies, see e.g. [7, 12, 22–
29], its consequences on acoustic scattering and generation of entropy wave
have not been fully explored. The present paper will analyze these conse-
quences, by verifying the validity of the equations with physical arguments
and examples.

In Section 2, we will introduce the difference between a moving heat
source and a heat source at rest and explicate some consequences of move-
ment of the heat source. In particular, the linearized conservation equa-
tions for perturbations of velocity, pressure and entropy across a moving
heat source are analyzed (section 3). Section 4 turns to the particular case of
a moving premixed flame front, with fluctuations in heat release rate, flame
speed and flame surface area in response to upstream velocity perturbations.
Next, the consequences of the flame front movement on entropy generation
and acoustic scattering are examined for both perfectly and non-perfectly
premixed flame (section 5-6). Finally, after terminology is established and
the main results of this study are presented, section 7 discusses and contex-

4



Preprint

tualizes previous publications on the model of a moving flame [7, 12, 22–29]
and a flame at rest [10, 15–17, 30–32], respectively.

2. Motivation

In this section, we state the problems discussed in the previous section
in mathematical terms and discuss some of the limitations that are implied
with the application of the conservation equations of mass, momentum and
energy to a heat source at rest. For the sake of simplicity, the case of a
“passive source”, i.e. a heat source without fluctuations of the heat release
rate, Q̇′ = 0, will be considered.

In presence of perturbations, relevant variables are divided into a mean
component, which varies spatially, and a fluctuating component, which in
general is a function of both time and space:

ϕ(x, t) = ϕ̄(x) + ϕ′(x, t). (1)

For analysis of the perturbations across a compact heat source, a commonly
adopted approach is to consider the linearized conservation equations just
upstream and downstream of a discontinuity. The equations for conservation
of mass, momentum and energy read (c.f. [5, 10, 15–17, 32, 33]):

[ρ′ū+ u′ρ̄]21 = 0,

[p′ + ρ′ū2 + 2ρ̄ūu′]21 = 0,

[cpT̄ (ρ′ū+ u′ρ̄) + ρ̄ū(cpT
′ + ūu′)]21 = Q̇′.

(2)

Angular brackets [ϕ]21 with sub-/superscripts denote the difference between
values of a flow variable ϕ upstream (”1”) and downstream (”2”) of the jump,
i.e. [ϕ]21 = ϕ2 − ϕ1. As mentioned in the previous section, the source region
is considered as infinitesimally thin (i.e. compact with respect to acoustic
and, in presence of mean flow, to entropy waves [10]) and fixed at position
x̄f in the stream-wise direction (see Fig. 1). The discontinuity is regarded
as a ’black-box’, and its dynamic response to upstream perturbations is only
represented by the source term Q̇′.

In order to simplify the analysis, the fluctuating terms may be normalized
by their respective mean values. Additionally, since flow regimes of interest
are typically characterized by M � 1, terms of second or higher order in

5



Preprint

Mach number may be neglected. Therefore, Eqs. (2) reduce to [12, 15, 27, 34]:

ρ′2
ρ̄2

+
u′2
ū2

=
ρ′1
ρ̄1

+
u′1
ū1

,

p′2
p̄2

=
p′1
p̄1

+O(M2),

u′2
ū2

(
T̄2

T̄2 − T̄1

)
=
Q̇′

¯̇Q
+
u′1
ū1

(
T̄1

T̄2 − T̄1

)
− p′1
p̄1

+O(M2).

(3)

Considering the simplest case of a passive heat source (Q̇′ = 0) and recalling
the relation between entropy waves and fluctuations in pressure and density:

s′

cp
=

p′

γp̄
− ρ′

ρ̄
, (4)

Eqs. (3) give for the entropy waves produced downstream:

s′2
cp

=

(
T̄1

T̄2

− 1

)(
u′1
ū1

+
p′1
p̄1

)
+
s′1
cp

+O(M2). (5)

Now, assuming that the upstream flow is isentropic s′1 = 0, and considering
that for linear perturbations and small Mach numbers pressure fluctuations
are negligible compared to velocity fluctuations,

p′1
p̄1

= O(γM)
u′1
ū1

� u′1
ū1

, (6)

it is reasonable to state that entropy production across the passive source is
mainly due to the velocity perturbations:

s′2
cp
≈
(
T̄1

T̄2

− 1

)
u′1
ū1

. (7)

Such dependency is easily explained for a compact heater. In fact, in presence
of constant total heat transfer rate (Q̇ = ṁcp∆T = const), as the mass flow
rate through the heater changes, the specific enthalpy jump will also change,
generating temperature fluctuations. This is confirmed by Eq. (7), which
shows that in response to a positive fluctuation in velocity u′1 (i.e. to an
increase in mass flow), a drop in downstream specific entropy s′2 must take
place.
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However, for the case of a perfectly premixed flame, where the equivalence
ratio is constant and cannot be affected by flow perturbations, the depen-
dency expressed in Eq. (7) seems unphysical. In fact, in this case, the specific
enthalpy jump is constant by definition and does not depend on the changes
in mass flow rate.

Why do the coupling relations in Eqs. (2) and (3) fail to represent the
physics of a perfectly premixed flame? The answer was given by B. T. Chu
(see [21]), who pointed out that, acoustically speaking, the ”chief difference
between a flame and a heater” lies in the fact that the flame front has a
dynamic behavior and can move from its mean position in response to up-
stream perturbations. Such movement, however, is not known a priori and
is related to the local flame speed, ”whereas for a heater, such movement is
assumed to be given”.

Indeed, the flame is not a fixed discontinuity, but can move, wrinkle or
stretch in response to velocity perturbations. The presence of a moving dis-
continuity, instead of one at rest, impacts directly on the acoustic scattering
and entropy generation across the heat source.

In fact, in presence of a moving discontinuity, the instantaneous mass flow
crossing the flame front does no longer depend exclusively on the incoming
flow conditions (ρ1, u1), but also on the unsteady movement of the flame front
itself. Considering a quasi-1D configuration – see Fig. 1 – the instantaneous
mass flow crossing the discontinuity becomes:

ṁ(t) = (u1(t)− us(t)) ρ1(t), (8)

where us(t) is the velocity of the flame front in the laboratory frame of
reference, determined by kinematic balance between flame propagation and
convection. This balance may be disturbed by flow perturbations, resulting
in u′s(t) 6= 0. Equation (8) shows that, depending on the response of the flame
to acoustics in terms of us(t), very different results for the mass conservation
equation may be obtained.

Furthermore, mass-specific entropy s is – just like temperature T – an
intensive quantity, related to the total heat release Q̇(t) through the mass
consumption at the flame front. Therefore, entropy and temperature fluctu-
ations downstream of the flame can be correctly predicted if and only if the
fluctuations in mass consumption are also quantified correctly.

The second issue mentioned in the introduction concerns the specific case
of combustion in the limiting case of zero Mach number [17]. In absence of
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mean flow, M = 0, the equations (2) for a passive flame Q̇′ = 0 are simplified
to:

ρ̄1u
′
1 = ρ̄2u

′
2, (9)

p′1 = p′2, (10)

T̄1ρ̄1u
′
1 = T̄2ρ̄2u

′
2. (11)

At zero Mach, the combustion is perfectly isobaric, p1 = p2. With the ideal
gas law, ρ1T1 = ρ2T2. It follows that the energy conservation Eq. (11) is
reduced to

u′1 = u′2, (12)

which may be interpreted as conservation of volume flow rate (per duct cross-
sectional area) across the flame.

The validity of volume flow rate conservation at zero Mach is in agreement
with the results of many thermoacoustic studies. It can be easily verified with
the linearized Rankine-Hugoniot equations (see [2, 15, 34]):

u′2 = u′1 + ū1

(
T̄2

T̄1

− 1

)(
Q̇′

¯̇Q
− p′1
p̄1

)
+O(M2),

(13)
p′2 = p′1 +O(M2).

With reference to Eq. (13), in absence of mean flow, the upstream and
downstream velocity perturbations coincide, thus agreement with Eq. (12)
is established.

However, the result in Eq. (12) does not agree with the mass conservation
expressed by Eq. (9), which implies that the velocity fluctuations are ampli-
fied across the flame front as an effect of the temperature jump. Bauerheim
et al. [17] proved the consistency of volume flow conservation at M = 0
with mass flow conservation at M 6= 0. In their analysis, the entropy wave
source terms were crucial to the solution of the problem. However, as men-
tioned previously, the generation of entropy waves downstream a premixed
flame front should be a function of the enthalpy of the premixture, and, in
principle, independent from mass flow conservation. Is there a solution to
the inconsistency between volume and mass flow at M = 0, which does not
depend on entropy generation, in the specific case of a premixed flame?

Although the question of mass vs. volume flow rate conservation might
seem to be completely unrelated to the problem of generation of entropy
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waves, we argue that its resolution can be found in the flame front movement
as well. In fact, Eq. (9) expresses the continuity equation across a heat source
at rest, while the shape and position of a flame front are usually not fixed,
as mentioned previously (see Eq. (8)). Therefore, the mass conservation
equation should be formulated for the case of a moving heat source. This
formulation allows for the decoupling of entropy generation from the mass
conservation equation, in the case of a moving flame front. Moreover, we
shall demonstrate (see Chapter 6) that the condition expressed by Eq. (12)
indeed implies for a passive flame that the flame front is moved back and
forth by the velocity perturbations (see fig. 1), such that the velocity u′s of
the discontinuity itself equals the fluctuations in velocity u′1, which in turn
equal the downstream fluctuations u′2.

The considerations presented for the two cases suggests that the flame
front movement should be taken into account when analyzing the coupling
of acoustic waves across a flame front and the generation of entropy waves
by the flame. The next section will review the formalism introduced by B.
T. Chu [20, 21] to analyze the perturbations across a moving premixed flame
front. The analysis is extended up to 1st order in Mach.

3. Coupling relations for acoustics and entropy across a moving
heat source

3.1. Derivation

In gas dynamics, the Rankine-Hugoniot conditions express the relation
between the flow variables upstream and downstream of an infinitesimally
thin discontinuity, typically a shock wave. Across a moving shock wave that
is propagating with velocity us, the Rankine-Hugoniot conditions for the
vector ϕ of flow variables are expressed as (see [35]):

us(ϕ2 − ϕ1) = f(ϕ)2 − f(ϕ)1. (14)

In a system of conservation equations associated to the vector ϕ, f(ϕ) is the
vector of flux functions of the conserved variables.

In the present study the Rankine-Hugoniot conditions for a moving dis-
continuity will be applied to a plane, infinitesimally thin heat source in one
dimensional flow, see see Fig. 1. For the moment, we make no further as-
sumptions on the nature of the heat source. The application that we have
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in mind is, of course, a compact premixed flame in a quasi-1D flow configu-
ration. Pertinent consequences for the acoustic / entropy coupling relations
will be explored in the next section.

The relevant governing equations are the non-homogeneous Euler equa-
tions:

∂ϕ

∂t
+
∂f(ϕ)

∂x
= S, (15)

where ϕ, f(ϕ) and the source term S are of the form:

ϕ =

 ρ
ρu
ρE

 , f(ϕ) =

 ρu
ρu2 + p
u(E + p)

 , S =

0
0
q̇

 . (16)

The conserved flow variables are mass, momentum and energy, while the
inhomogeneity of the equations is due to the heat source term in the energy
equation.

Applying the jump condition in Eq. (14) to the variables in Eq. (16), the
conservation equations across a moving heat source (first presented by Chu
[21]) read:

ρ2u2 − ρ1u1 = us(ρ2 − ρ1), (17)

ρ2u
2
2 − ρ1u

2
1 + p2 − p1 = us(ρ2u2 − ρ1u1), (18)

ρ2u2H2 − ρ1u1H1 − Q̇ = us(ρ2E2 − ρ1E1), (19)

As already mentioned, us(t) is the velocity of the heat source in the
laboratory frame of reference. As an extension of the original formulation
in [35], which is frequently used in gas dynamics, here we have included a
source term in the energy equation, Q̇, which is the total heat release rate

per cross-sectional area, Q̇ =
∫ x̄+f
x̄−f

q̇ dx. Recalling the relations between the

total energy E and total enthalpy H for an ideal gas:

H = h+
1

2
|u|2 = e+

p

ρ
+

1

2
|u|2 = E +

p

ρ
, (20)

ρe =
p

γ − 1
, (21)

and under the hypothesis of constant γ and cp, it is possible to reformulate
the energy conservation equation (19) in terms of primitive variables ρ, u
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and p:

γ

γ − 1
(u2p2 − u1p1) +

1

2

(
ρ2u

3
2 − ρ1u

3
1

)
− Q̇ =

= us

(
1

γ − 1
(p2 − p1) +

1

2

(
ρ2u

2
2 − ρ1u

2
1

))
. (22)

Assuming flow in the low Mach regime, terms of second or higher order
in Mach are neglected. This is appropriate for many combustion systems, as
discussed below. The conservation equations reduce to (see [20],[27]):

[ρu]21 − us [ρ]21 = 0, (23)

[p]21 = O(M2), (24)
γ

γ − 1
[up]21 = Q̇+O(M2). (25)

3.2. Linearized, non-dimensional conservation equations

In the present analysis, we consider a thin planar heat source oscillating
around a fixed mean position x̄f , see Fig. 1. The decomposition for us(t) is
thus:

us(t) = 0 + u′s(t). (26)

The equations for the mean quantities developed up to O(M2) are:

[ρ̄ū]21 = 0, (27)

[p̄]21 = O(M2), (28)
γ

γ − 1
[ūp̄]21 = ¯̇Q+O(M2). (29)

Subtracting Eqs. (27) - (29) from Eqs. (23) - (25), the conservation
equations for perturbation quantities are obtained. Retaining only the fluc-
tuations of first order and normalizing by the corresponding mean quantities
yields for mass:

ρ′2
ρ̄2

− ρ′1
ρ̄1

+
u′2
ū2

− u′1
ū1

=
u′s
ū1

(
1

λ
− 1

)
, (30)

momentum:
p′1
p̄1

=
p′2
p̄2

+O(M2), (31)
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and energy:

Q̇′

˙̄Q
=
p′1
p̄1

+
u′2
ū2

(
λ

λ− 1

)
− u′1
ū1

(
1

λ− 1

)
+O(M2), (32)

where λ ≡ T̄2/T̄1 is the ratio between downstream and upstream mean tem-
peratures. The normalized conservation equations were derived considering
the normalized equation of state for perfect gases:

ρ′2
ρ̄2

+
T ′

2

T̄2

=
ρ′1
ρ̄1

+
T ′

1

T̄1

. (33)

Equations (30)-(32) are formulated for the case M̄1 6= 0. In absence of mean
flow, the linearized conservation equations cannot be expressed in the non-
dimensional form (u′2/ū2, p

′
2/p̄2, ρ

′
2/ρ̄2), but in terms of absolute fluctuating

quantities (u′2, p
′
2, ρ

′
2).

3.3. Scattering and generation of acoustic and entropy waves

The equations (30) - (32) are a system of three equations in three un-
knowns. Two of them, u′2 and p′2, are acoustic quantities, while the third,
ρ′2, is a function of both acoustic and entropy fluctuations, see Eq. (4). By
substituting the density fluctuations it is possible to separate the acoustic
scattering, i.e. the transmission and reflection of acoustic waves, from en-
tropy generation. Omitting the algebraic manipulations and neglecting terms
of 2nd order and higher order in Mach number, Eqs. (30) - (32) are re-written
in terms of acoustic and entropy perturbations as follows:

u′2
ū2
p′2
p̄2
s′2
cp

 =


1
λ

(
1
λ
− 1
)

0

0 1 0(
1
λ
− 1
) (

1
λ
− 1
)

1


︸ ︷︷ ︸

M


u′1
ū1
p′1
p̄1
s′1
cp

+


(
1− 1

λ

)
0(

1− 1
λ

)


︸ ︷︷ ︸
N

Q̇′

¯̇Q
+

 0

0(
1− 1

λ

)


︸ ︷︷ ︸
U

u′s
ū1

(34)
The matrix M and the vectors N and U express the respective influence of
upstream perturbations, fluctuations of heat release rate and velocity of the
heat source on the downstream perturbations.

The terms M11 , M12, M21 and M22 represent the acoustic transfer ma-
trix, since they relate exclusively acoustic fluctuations p′, u′ at upstream and
downstream positions to each other. The matrix coefficients M21 and M22
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show that the pressure does not exhibit a discontinuity at the heat source.
This is a direct consequence of the low Mach number approximation, valid
up to first order in Mach number (M).

The matrix coefficients M31 and M32 will be non-zero if the mean heat
release rate is non-zero, such that T2 6= T1 and thus λ 6= 1. In this case,
entropy is coupled to the acoustics, i.e. upstream acoustic fluctuations can
generate downstream entropy waves. Conversely, the scattering of acoustic
waves is independent from upstream entropy perturbations, as M13 = M23 =
0.

The vector U shows that the immediate influence of heat source move-
ment is restricted to the production of entropy waves. Such a results is very
interesting, since it confirms the idea expressed above (see Section 2) that
flame front movement plays a fundamental role in the correct prediction of
entropy generation across a premixed flame.

On the other hand, it appears that there is no direct influence of the veloc-
ity u′s on the acoustic coupling relations (see U1 and U2). This suggests that
the Rankine-Hugoniot relations (13) derived from the conservation equations
for a generic heat source at rest (see e.g., [2, 5, 12, 15, 34]) are also valid for
the case of a moving heat source, at least for perturbations up to first or-
der in Mach number. However, before drawing conclusions on the absolute
independence of the acoustic coupling relations from flame front movement,
it is necessary to take into account interdependencies between fluctuations
of the rate of heat release and the velocity of a heat source that result from
its physical nature. Such interdependencies or constraints will be different
for a heater, or a premixed flame, or a non-premixed flame, say, and need
to be taken into account when trying to achieve closure for the system of
Eqs. (34) by relating the heat release fluctuations to the upstream perturba-
tions, Q̇′ = Q̇′(p′1, u

′
1, s

′
1). This will be done in the next section for the case

of a premixed flame in a quasi-1D flow configuration.

4. Coupling relations for acoustics and entropy across a moving
premixed flame

The thermoacoustic closure problem referred to at the end of the previous
section is usually concerned with the quantification of heat release fluctua-
tion Q̇′ in response to acoustic perturbations. This may be achieved, e.g.,
by determining a flame transfer function [12, 36–39]. In the present paper,
we pursue a different goal and concentrate on the interdependencies between

13



Preprint

flame speed, flame movement, flame surface area and heat release rate that
result from the “physics” of the particular flame configuration at hand. This
allows to describe and analyze the role of flame movement in acoustic scat-
tering and entropy generation at a premixed flame. The analysis is carried
out in a quasi-1D framework.

4.1. Kinematic balance at a premixed flame front

For a ducted premixed flame one may define a specific (per duct cross-
sectional area, units m/sec) rate of volume consumption,

V̇ ≡ 1

Ad

∫
Af

Sf dA =
SfAf
Ad

, (35)

where Ad is the cross-sectional area of the duct, which is assumed constant,
Sf the flame speed and Af the flame surface area. The second identity holds
if the flame speed Sf is constant along the surface of the flame, which is
assumed in the following without essential loss of generality.

The following kinematic condition links the velocity u1 of premixture
upstream of the flame with the velocity us of the flame in the laboratory
frame and the volume consumption rate V̇ :

u1(t) = V̇ (t) + us(t). (36)

For an anchored flame in steady state, kinematic balance between flow
and flame propagation implies (see also Fig. 1)

ū1 = ¯̇V, (37)

with ūs = 0. On the other hand, if the flow is perturbed, the flame will
respond with changes in shape and position, such that

u′1(t) = V̇ ′(t) + u′s(t). (38)

Evidently, the volume consumption rate V̇ may be interpreted as an ef-
fective flame speed, akin to the flame brush speed in turbulent combustion
modelling, which describes summarily the effect of flame shape on the con-
sumption rate of premixture: elongated or wrinkled flames have a flame sur-
face area Af larger than the duct cross-sectional area Ad and thus consume
more premixture than flat flames.
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4.2. Heat release and volume consumption for a premixed flame

In a premixed flame, heat release takes place when premixture is con-
sumed at the flame front. It follows that the heat release rate for a lean
premixed flame may be expressed in terms of the volume consumption rate
V̇ as follows:

Q̇ = ρ1V̇ φ q, (39)

where Q̇ is the heat release rate per cross-sectional area of the duct (units
W/m2), φ the equivalence ratio of the premixture (which equals unity for
stoichiometric conditions) and q the mass specific enthalpy of the premixture
in stoichiometric conditions (units J/kg).

For small perturbations, one formulates

Q̇′

¯̇Q
=
ρ′1
ρ̄1

+
V̇ ′

¯̇V
+
φ′

φ̄
. (40)

Combining expression (40) with the kinematic conditions Eqs. (36), (38)
and Eq. (4), which relates perturbations in density to those of pressure and
entropy, gives the following expression for the heat release fluctuations of a
premixed flame:

Q̇′

¯̇Q
=
u′1
ū1

− u′s
ū1

+
φ′

φ̄
+

1

γ

p′1
p̄1

− s′1
cp
. (41)

How to interpret this result? It is obviously not an alternative formulation
of the energy balance Eq. (32) across a compact heat source, as it does not
involve any downstream quantities (index ”2”). Also, it should not be inter-
preted as a flame transfer function. Premixed flames respond predominantly
to perturbations of upstream flow velocity, Q̇′ ∼ Fu(u

′), or equivalence ratio,
Q̇′ ∼ Fφ(φ′). The corresponding flame transfer functions Fu and Fφ (see
Huber and Polifke [40]) depend in a non-trivial manner on detailed flow-
flame interactions, which are not the subject of the present study. Instead,
Eq. (41) should be regarded as an expression of interdependencies among flow
perturbations, flame movement and rate of heat release. These constraints
result from the physical effects that govern a lean, premixed flame front, see
Eq. (36) and Eq. (39).

In the previous section, we have presented a general expression of the
coupling relations for mass, momentum and energy across a compact, moving
heat source, i.e. Eq. (34). The corresponding relations for the specific case
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of a premixed flame are obtained by substituting the result (41) for relative

fluctuations in heat release Q̇′/ ¯̇Q in Eq. (34), resulting in:
u′2
ū2
p′2
p̄2
s′2
cp

 =


1
(

1− 1
γ

) (
1
λ
− 1
)

1
λ
− 1

0 1 0

0
(

1− 1
γ

) (
1
λ
− 1
)

1
λ


︸ ︷︷ ︸

M


u′1
ū1
p′1
p̄1
s′1
cp

+


(
1− 1

λ

)
0(

1− 1
λ

)


︸ ︷︷ ︸
F

φ′

φ̄
+


1
λ
− 1

0

0


︸ ︷︷ ︸

U

u′s
ū1

(42)
Here we have chosen to represent the interactions in terms of three groups
of key variables: upstream flow perturbations u′1, p

′
1, s

′
1, equivalence ratio

perturbations φ′ and flame movement u′s.
Note that upstream entropy fluctuations are often negligible, s′1 → 0.

Also, it was shown in Section 2 that the pressure term p′1/(γp̄1) in Eq. (41)
is of first order in Mach number. On the other hand, as mentioned above,
there is no a priori justification for assuming that the order of magnitude
of the flame front movement u′s is small, since it depends in a non-trivial
manner on the response of the flame to acoustic perturbations. Similarly,
equivalence ratio perturbation are in general a leading order term in Eq. (41),
as they result from fluctuations in air and fuel flow rates [12, 29]. It is worth
noting that in the present quasi 1-D analysis we only consider fluctuations in
time and not in space, and that therefore fuel inhomogeneities in the normal
direction are not accounted for.

For the special case of a perfectly premixed flame, where fluctuations of
equivalence ratio are absent, at low-Mach number and for isentropic upstream
conditions, Eq. (41) reduces to:

Q̇′

¯̇Q
=
u′1
ū1

− u′s
ū1

+O(M) (43)

Correspondingly, the 2nd term on the r.h.s. of Eq. (42) drops out and we see
that in this case the downstream flow perturbations (u′2, p′2, s′2) are deter-
mined entirely by upstream flow perturbations (u′1, p′1, s′1) and flame move-
ment u′s.

It should be noted that, even for φ′ = 0, the system described in Eq. (42)
is still under-determined. In fact, the kinematic response of the flame front u′s
to upstream velocity perturbations is not known a priori. However, according
to Eq. (43), such closure problem can be solved, with good approximation, by
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quantifying the heat release rate response to upstream perturbations in ve-
locity, i.e. by determining the flame transfer function Fu [40] of the perfectly
premixed flame.

4.3. Kinematic balance in time and frequency domains

Re-writing the kinematic balance Eq. (38) as

u′s(t) = u′1(t)− V̇ ′(t) (44)

it becomes evident that the position of the flame front is subject two com-
peting effects: On the one hand, perturbations in the oncoming flow u′1 > 0
convect the flame front downstream. On the other hand, perturbations in
volume consumption rate V̇ ′ > 0 cause the flame front to propagate in the
upstream direction.

This additional constraint was combined with Eq. (40) to derive Eq. (42)
from (34) by elimination of the heat release Q̇′. Alternatively, the equations
may be written in terms of heat release Q̇′ instead of flame front velocity in
the laboratory frame u′s. Fundamentally, both descriptions are equivalent –
but in the present context, the formulation that makes explicit use of the
flame velocity u′s is more convenient. Either way, the system of equations is
not closed and a suitable closure model that relates either Q̇′ or u′s to flow
perturbations is needed.

Frequently, equations are transformed to the frequency domain and clo-
sure is achieved by relating the heat release Q̇′ to upstream velocity pertur-
bations u′1 via a flame transfer function Fu(ω) [38, 39]. If one formulates the
governing equations with u′s instead of Q̇′, see Eq. (42), a “flame velocity
transfer function” Gu(ω) is required, such that

u′s
ū1

= Gu(ω)
u′1
ū1

. (45)

Such a velocity transfer function Gu(ω) allows to develop interesting con-
clusions on the relation between heat release rate and the movement of a
perfectly premixed flame. Under the assumptions made in the previous sec-
tion, the expression for the heat release rate Eq. (43) implies that

Fu(ω) = 1−Gu(ω). (46)

Consequently, at the low frequency limit ω → 0, where the transfer func-
tion for the heat release rate Fu of a perfectly premixed flame approaches
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unity [41], Gu vanishes and the flame front must remain at rest. Indeed, in
this quasi-stationary limit any non-zero flame front velocity u′s 6= 0 would
imply flash back or extinction.

On the other hand, the typical low-pass character of premixed flames
causes the gain of |Fu| to vanish at high frequencies, indicating that the
motion of the flame front is dominated by rapid convective displacement by
impinging velocity perturbations. The comparatively slow processes mod-
ulating the volume consumption rate, on the other hand, have negligible
influence at high frequencies.

In the next two sections, we shall discuss further consequences of the
interdependencies between flow and flame perturbations. In particular, the
implications of Eqs. (41) and (43) for the generation of entropy waves and the
scattering of acoustic waves at a premixed flame will be analyzed in detail.

5. Generation of entropy waves at a premixed flame

In the previous section, coupling relations for flow perturbations across
a compact, moving premixed flame have been obtained. Consequences for
the generation of entropy waves due to acoustic-flame interactions will be
discussed in the following. Both perfectly as well as non-perfectly premixed
flames will be considered. The analysis concentrates on the generation of
entropy waves, thus it will be assumed in the following that there are no
perturbations of entropy upstream of the flame (s′1 = 0).

In the literature on low-order modeling of flow-flame interactions it has
been stated repeatedly (see e.g., [10, 18]) that the leading order term in
downstream entropy fluctuation is different from zero whenever the normal-
ized fluctuations in heat release rate do not equal the fluctuations in upstream
velocity:

s′2
cp
6= 0 ⇔ Q̇′

¯̇Q
6= u′1
ū1

. (47)

This result indeed is inevitable if the flame is considered as a heat source at
rest, its paradoxical consequences for the prediction of downstream entropy
have been discussed in the Introduction.

On the other hand, according to Eq. (42), which describes a flame that
may change its position in response to flow perturbations, downstream en-
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tropy perturbations evaluate to

s′2
cp

=

(
1− 1

λ

)
φ′

φ̄︸ ︷︷ ︸
O(1)

+

(
1− 1

γ

)(
1

λ
− 1

)
p′1
p̄1︸ ︷︷ ︸

O(M)

+
s′1
cp︸︷︷︸
0

. (48)

The last term on the r.h.s. is zero by assumption (see above). The second
term, which results from an interaction of acoustic perturbations with the
mean temperature jump, is of first order in Mach number. A detailed analysis
of this mechanism of entropy wave generation is given in the Appendix of
this paper. The only term on the r.h.s. of Eq. (48) that is not negligible
at vanishing Mach number is the first term, which describes the result of
equivalence ratio fluctuations.

Eq. (48) may be written as follows:

s′2 = cp

(
1− Tc

Th

)
φ′

φ̄
+O(M). (49)

The interpretation of this result, which was already developed by Keller [34]
and Polifke et al. [5], is rather straightforward: inhomogeneities in the fuel
concentration of the premixture modulate the specific heat of combustion
and thus result in fluctuations of downstream temperature and density.

For a perfectly premixed flame φ′ = 0 and s′2 = O(M), i.e. leading order
entropy waves cannot be generated by this type of flame. This does not
imply - as Eq. (47) for a flame at rest would suggest - that fluctuations of
velocity cause a proportional and immediate perturbation of the heat release
rate. Instead, referring to Eq. (40), we find that for a perfectly premixed
moving flame

Q̇′

Q̇
=
V̇ ′

V̇
+O(M) (50)

and conclude that fluctuations in heat release rate vary according to the kine-
matic response of the flame, which determines e.g. the shape and surface area
of the flame and thus its volume consumption rate. However, perturbations
of this kind do not generate entropy waves, as they only modulate the rate
at which premixture is consumed by the flame, but they do not modulate
the heat released per unit mass of premixture and thus do not generate - to
leading order - inhomogeneities of entropy.

The analysis in this section has shown that for a premixed flame, the
generation of entropy waves is neither a direct nor a necessary consequence
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of unsteady heat release rate. Instead, entropy waves are generated to leading
order in Mach number only from inhomogeneities in the equivalence ratio of
the premixture. Additional entropy source terms, which are of first order in
Mach number, result from the interaction of acoustic fluctuations with the
mean heat release (see the Appendix). The contradiction discussed in the
introduction of this paper is thereby resolved.

The problem of the correct estimation of entropy waves is strictly con-
nected to the correct formulation of mass flow conservation equation. Indeed,
across a perfectly premixed flame, no leading order temperature inhomo-
geneities can be produced, therefore ρ′2/ρ̄2 ∼ O(M). In the model of a flame
at rest (Eqs. (3)), energy conservation gives for a passive source (Q̇′ = 0):
u′1 = u′2+O(M), while, in absence of leading order entropy, mass flow conser-
vation gives: u′2 = (T̄2/T̄1)u′1 +O(M). This result shows that inconsistencies
indeed arise in the model of the flame at rest, when entropy generation is
taken into account. The next section, on the other hand, will show how the
moving flame model (u′s 6= 0) solves the inconsistency above at both zero
and non-zero Mach number.

6. Coupling of velocity perturbations across a perfectly premixed
flame

With reference to Eq. (42), we see that velocity perturbations down-
stream of a premixed flame may result from several contributions: upstream
acoustic and entropy perturbations u′1, p′1, s′1, flame movement u′s and equiv-
alence ratio fluctuations φ′. The influences of φ′ and p′1 are easily explained:
As discussed in the previous section, the fluctuations in equivalence ratio
and pressure have, respectively, an impact of leading and first order on the
downstream entropy fluctuations. A change in downstream entropy (thus,
density) implies a modulation of the downstream velocity u′2, due to mass
conservation.

On the other hand, the influence of flame movement u′s cannot be deter-
mined a priori in the general case. Equation (38) shows that flame movement
u′s will result from an imbalance between upstream flow velocity u′1 and spe-
cific volume consumption rate V̇ ′ of the flame. The latter depends – see
Eq. (35) – on the response of flame area and flame speed to upstream flow
perturbations. These effects are non-trivial, and require advanced analytical
treatments and detailed experimental or numerical studies.
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Nonetheless, it is possible to make simplistic assumptions on the flame
response and explore the consequences, in order to highlight the role of the
flame movement on the acoustic coupling across the flame. In this section,
two limiting cases are analyzed: The first case concerns a passive, moving
flame, which is convected around its mean position by velocity perturbations
The other case, on the contrary, is a flame at rest.

On both cases, perfect premixture (φ′ = 0) will be considered, and we
assume the upstream flow to the isentropic, s′1 = 0. Only the consequences
for downstream velocity u′2 will be discussed, since to leading order pressure
and entropy are not influenced by the flame front movement in the case of a
premixed flame (see Eq. (42)).

6.1. Limit Case I: Passive Moving Flame

According to Eq. (43), the interdependencies between flow perturbations,
flame movement and heat release imply for a passive flame with Q̇′ = 0 that

u′1 = u′s +O(M). (51)

The coupling relations across the flame – see the first line of Eq. (42) imply
in this case that

u′2
ū2

=
u′1
ū1

1

λ
+O(M). (52)

Due to mass conservation Eq. (17), ū1λ = ū2, and we conclude that for a
passive, perfectly premixed flame

u′1 = u′s +O(M) = u′2 +O(M). (53)

The physical interpretation of this result is very simple: the flame as a
whole is convected back and forth by the velocity perturbations, such that
flame movement u′s corresponds perfectly to u′1 at every instant. There are
- by assumption - no fluctuations of heat release rate, Q̇′ = 0, such that the
condition u′2 = u′1 appears obvious. In the limiting case of vanishing Mach
number, M = 0, there is no transport of premixture towards the flame, such

that heat release rate ¯̇Q and flame speed Sf must also vanish. This limiting
case then corresponds to a temperature discontinuity, which is convected
back and forth by the velocity perturbations.

The analysis of this limiting case of a passive, moving flame resolves the
paradox of mass vs. volume flow rate conservation that was discussed in
the Introduction and Section 2. It is gratifying to see that volume flow rate
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conservation follows in a very straightforward manner from the conservation
laws for mass, momentum and energy plus the kinematic conditions at the
flame. The latter must be invoked, because it is not assumed that the flame
is at rest.

6.2. Limit Case II: Flame at Rest

The second limit-case considers a flame at rest, such that u′s = 0 even in
the presence of flow perturbation, u′1 6= 0. The interdependencies in Eq. (41)
resulting from the physics of the flame require in this case that

Q̇′

¯̇Q
=
u′1
ū1

+O(M). (54)

Furthermore, the coupling relations (42) across a premix flame demand that

u′2
ū2

=
u′1
ū1

+O(M), (55)

which may be re-written as

u′2 =
T̄2

T̄1

u′1 +O(M). (56)

This result is in agreement with the linearized Rankine-Hugoniot relations
(13) and corresponds to ’naive’ application of the continuity equation to
flow across a heat source: the velocity fluctuations downstream exceed those
upstream as an effect of the temperature jump.

Returning to the physics of the problem, we realize with Eq. (38) that
the flame can only be at rest if the specific volume consumption of the flame
is always equal to the upstream velocity, V̇ ′ = u′1. This condition results
from the constraint that for a perfectly premixed flame, each fluid element
passing through the flame experiences the same increase of temperature2. In
other words, the flame would have to respond to a modulation of upstream
velocity u′1 by adjusting the flame area or flame speed in such a manner,
that the volume consumption rate is at each instant in time equal to the
upstream velocity. This scenario might be a valid description of realistic

2This constraint would be violated in the case of incomplete combustion or heat loss,
but such effects are not considered here.
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flame behavior in the limit of low frequencies. However, the response of a
premix flame to flow perturbations is characterized by convective time lags.
Thus one must conclude that in order to describe flame-acoustic coupling,
the model of a heat source that is free to change its position in response to
flow perturbations should be used in the general case (u′s 6= 0).

7. Discussion of previous works

Chu formulated the relations which describe the coupling of acoustic dis-
turbances across a moving, compact flame front [20]. The present study
adopted Chu’s moving flame model to a quasi-1D framework, and explored
consequences for coupling relations and generation of entropy waves. In the
following, previous works related to these issues shall be re-visited, in order
to further clarify the interdependencies among unsteady heat release rate,
flame kinematic response, acoustics and entropy generation.

7.1. Survey of other moving flame front jump conditions

Blackshear [22] proposed matching conditions for velocity and density
across a flame front that involve a ”flame volume” Vf ,

ADu1(t) = Af (t)Sf +
∂Vf (t)

∂t
, (57)

ADu2(t) = Af (t)Sf
ρ1

ρ2

+
∂Vf (t)

∂t
, (58)

where AD is the area of the duct and Af the area of the flame front. The
variation in time of the flame volume Vf (t) decouples the rate of incoming
volume flow from the volume consumption rate of premixture at the flame
front. This introduces an additional degree of freedom into the model of
Blackshear, equivalent to the relaxation of the condition that the flame be
at rest.

The flame front velocity in the laboratory flame us does not appear ex-
plicitly in Blackshear’s analysis. But the relation to the ideas discussed in the
present paper can be elucidated quite easily. Combining the above equations,
one obtains:

ρ2u2(t)− ρ1u1(t) =
(ρ2 − ρ1)

AD

∂Vf (t)

∂t
(59)

In steady state, the partial derivative in time in Eq. (59) is zero, incoming
and outgoing volume flow and volume consumption at the flame front are
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equal to each other. In the unsteady case, the rate of change of the flame
volume ∂Vf (t)/∂t = Af (t)Sf−ADu1(t), see Eq. (57). Substituting this result
in Eq. (59) yields

ρ2u2(t)− ρ1u1(t) = (ρ2 − ρ1)
(Af (t)Sf

AD
− u1(t)

)
, (60)

which should be interpreted as a combination of the mass conservation across
a moving flame front Eq. (17) and the kinematic balance at the flame front
Eq. (35).

Dowling [7] adopted the formalism of Blackshear [22] for the analytical
study of a premixed flame anchored on a flame holder. Presuming a V-shaped
flame front, it was possible to relate fluctuations in flame volume Vf to those
of flame surface area Af and heat release rate Q̇. Compare this to the for-
malism developed in the present study, which does not presume a certain
flame shape, but instead requires a transfer function for the heat release rate
Fu or the flame velocity Gu to achieve closure, see Section 4.3. One may
conclude that the formulations of Chu [20] and Blackshear [22] both share
an important feature, i.e. they decouple the rates of incoming flow and vol-
ume consumption by introducing an additional degree of freedom, i.e. flame
movement us and flame volume Vf , respectively. However, the conceptual
differences between the two formulations resulted in further development of
the models in different directions.

The matching conditions expressed by Eqs. (39) - (40) can be also found
in the work by Merk [23, 24]. Note, however, that Merk considers only
perfectly premixed flames, and mainly focused on the contributions of flame
area (or volume) and upstream density.

Pelcé and Rochwerger [25, 26] adopted the moving flame model for the
description of vibratory instability in cellular flames. Their analysis recovers
the quasi 1-D formulation used in the present paper, the kinematic balance
at the flame front (see Eqs. (6)-(9) in [26]) is given in the same form as in
Eq. (38).

In the more recent literature on 1-D analysis of thermoacoustic systems,
see e.g. [10, 15, 16], the moving flame model (i.e. the kinematic balance at
the flame front) has not found extensive application. The reason lies per-
haps in the fact that the flame front movement u′s only appears in the mass
conservation equation, while in the energy conservation equation it is found
only in terms of higher order in Mach number (see Eq. (22)). Thus the dif-
ferences between the energy conservation equation in the moving model and
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the model of the heat source at rest are not readily apparent. As noted in
Section 3, the Rankine-Hugoniot relations for u′ and p′ are exact for fluctua-
tions up to first order in Mach and the flame kinematics can be accounted for
implicitly in the fluctuating heat release rate Q̇′. Inconsistencies between the
two models arise as soon as entropy generation is taken into consideration.

7.2. Flame kinematics and unsteady heat release

Schuermans [12] in the analysis of a premixed, turbulent, swirl stabilized
flame, proposed two different closures for a simplistic flame model, featuring
only acoustic and equivalence ratio fluctuations. In one model the flame is
at rest at an axial position (ref. Eq. (17) in [12]), while the other model
regarded the flame as a discontinuity fluctuating around a mean position(ref.
Eq. (30) in [12]). The system transfer matrix featuring the moving flame
model gave a better agreement with experiments. The model of flame at
rest can be recovered in our analysis from Eq. (40), assuming that u′s = 0
and V̇ ′ = u′1 in every instant. The moving flame model can be recovered
from Eq. (40), considering that the flame speed and the flame area are both
constant, i.e. u′s = u′1 and V̇ ′ = 0. The unsteady heat release rate in the
moving flame model is mainly due to equivalence ratio fluctuations. The
flame area, however, was considered as constant in this work.

In his review on the modeling of premixed combustion, Lieuwen (see [28],
Eq. (34)-(39)) made an explicit distinction between the heat release rate due

to changes in flame area Q̇′/ ¯̇Q|u′ and the share due to changes in equivalence

ratio Q̇′/ ¯̇Q|φ′ . In the context of Lieuwen’s analysis, the flame can be modeled
as 3:

Q̇′

¯̇Q
=
Q̇′

¯̇Q

∣∣∣∣
u′

+
Q̇′

¯̇Q

∣∣∣∣
φ′

=
A′
f

Āf
+

∫
∆h′RdĀf∫
∆h̄RdĀf

, (61)

where ∆hR is the heat of reaction, which is function of the equivalence ratio.
Equation (61) is the same formulation as Eq. (40) up to leading order. The

former quantity Q̇′/ ¯̇Q|u′ depends on the response of the flame surface A′
f/Āf

to upstream velocity fluctuations. In our analysis, Q̇′/ ¯̇Q|u′ corresponds to

the change in total volume consumption rate V̇ ′/ ¯̇V in Eq. (36). On the other

3the sensitivity of the local flame speed Sf to equivalence ratio fluctuations is not
discussed here
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hand, Q̇′/ ¯̇Q|φ′ is related exclusively to the generation of the temperature
inhomogeneities downstream. In the quantification of the downstream en-
tropy waves, it is useful to separate the unsteady heat release rate associated
to inhomogeneities in the premixture, from the unsteady heat release rate
due to modulations in mass flow rate. Such distinction is useful because
the area change only governs the amount of the premixture being burnt in-
stantaneously, while the temperature jump is a function of the enthalpy of
the premixture only. When determining generation of entropy waves by a
premix flame, only the unsteady heat release per unit of mass should be
taken into account. According to the formalism above, this corresponds to

Q̇′/ ¯̇Q|φ′ . Accounting explicitly for the flame front movement u′s in the jump

relations allows to decouple the entropy production s′2 from Q̇′/ ¯̇Q|u′ , as shown
in Eq. (34) and (42). On the other hand, the model of a heat source at rest
does not allow for such decoupling.

7.3. Models of entropy production by a compact heat source

Dowling [10, 31] analyzed the entropy production across a compact heat
source at rest. Her analysis yields for the downstream entropy:

s′2
cp

=
(

1− 1

λ

)(Q̇′

¯̇Q
− u′1
ū1

− p′1
p̄1

)
, (62)

where Q̇(t) is the total heat release rate per unit of volume. Equation (62)
shows that, in the case of a heat source at rest (e.g. a heated wire or a heat
exchanger) entropy waves are determined predominantly by the unsteady
heat release rate (or heat transfer rate) and upstream velocity fluctuations,
given that pressure perturbations are of higher order in Mach number. Note
that Dowling also distinguishes between the total heat release per unit of
volume and per unit of mass, respectively, which is crucial for the correct
prediction of entropy generation. These conclusions are in agreement with
the analysis presented in Section 5.

However, the reader is cautioned that Eq. (62) is not applicable for per-

fectly premixed flames, unless Q̇′/ ¯̇Q = u′1/ū1, i.e. if |FTF | = 1, which is in
general not the case. Eq. (50) may be satisfied in general only if the flame
front to is allowed to move (i.e. u′s 6= 0).

Cumpsty [30] presented results in terms of downstream entropy produc-
tion as a function of Mach number and non-dimensional frequency. The
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kinematic balance at the flame front was not considered. However, Cump-
sty made a reasonable prediction of the entropy waves, because he consid-
ered the mass-specific energy equation, instead of the total energy conser-
vation equation. The entropy fluctuations downstream are formulated as:
s′2/cp = q′/cpT̄1, where q′ corresponds to the mass-specific heat release. This
treatment is in line with the arguments put forward in Section 5. Cump-
sty’s results for downstream entropy fluctuations in function of frequency
are mainly constant, and not frequency-dependent, as Eq. (62) would sug-
gest.

In the work of Polifke et al. [5] on the coupling between entropy and
acoustic waves at a chocked exit, only fluctuations in heat release rate that
are due to changes in fuel mass fraction (Q̇′

YF
) were accounted for in the

determination of the strength of downstream entropy waves. Fluctuations
in the momentary consumption rate due to coherent vortices contribute to
perturbations in heat release rate, but do not contribute to the generation
of entropy waves. Again, this treatment is in complete agreement with the
arguments developed above.

Finally, it is noted that in case the flow through the heated region is
not subject to a kinematic balance as would be the case heat exchangers
or hot wires, the previous works on discontinuities at rest (Dowling [10])
and the considerations on the limit of vanishing Mach number by Nicoud
and Wieczorek [32] and Bauerheim et al [17] represent a complete and solid
analysis of the mechanisms of acoustic scattering and entropy generation.

8. Conclusions

In this paper, a detailed analysis of the conservation equations for acoustic
and entropy perturbations across a moving heat source has been carried out.
The analysis allows to develop a deeper understanding of the influence of
the flame front movement on the acoustic scattering and entropy generation.
At the same time, it resolves paradoxical conclusions that result from the
assumption of a flame front at rest in a physically intuitive manner.

Important consequences on the substantial generation of entropy waves
by a premixed flame were elucidated. Removing the hypothesis of the fixed
position of the heat source and invoking instead kinematic balance at the
flame front, it has been demonstrated that to leading order in Mach number
temperature inhomogeneities downstream of a premixed flame are associated
exclusively with inhomogeneities in the mass-specific heat of reaction of the
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premixture, i.e. the fuel concentration. In the absence of equivalence ratio
perturbations, and assuming complete combustion without significant heat
loss due to convection or radiation, only a small amount of entropy fluctu-
ations may be generated. These terms are of first order in Mach number,
and result from interactions between upstream acoustics and the mean heat
release rate.

In addition, the conservation laws for mass, momentum and energy at
vanishing Mach number plus the kinematic matching conditions at a moving
flame imply that the conservation of volume flow rate across a passive heat
source follows in a very straightforward manner from mass conservation.
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Appendix A. Analysis of terms of first order in entropy generation

In section 5 it was shown that to leading order entropy fluctuations down-
stream of a premixed flame are exclusively due to inhomogeneities in the
equivalence ratio of the upstream premixture φ′. In the absence of equiva-
lence ratio fluctuations, entropy waves are of first order in Mach number,

s′2
cp

=

(
1− 1

γ

)(
1

λ
− 1

)
p′1
p̄1︸ ︷︷ ︸

O(M)

. (A.1)

The physical mechanism that leads to these terms is unclear. How are
entropy waves generated in absence of inhomogeneities in the premixture?
In this section, we will give a detailed explanation of such interaction.

The jump across the flame, at very low Mach numbers, can be regarded
as an isobaric process at first order of approximation, see Eq. (31), with
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mass-specific heat addition

q1→2 =

∫ 2

1

dq =

∫ 2

1

Tds =

∫ 2

1

cpdT = cp(T2 − T1). (A.2)

The corresponding change in specific entropy equals

s2 − s1 =

∫ 2

1

ds =

∫ 2

1

cp
dT

T
= cp log

T2

T1

. (A.3)

Combining these two results, which are an expression of the 1st and 2nd Law
of Thermodynamics, one formulates for mean quantities

(s̄2 − s̄1) =
q̄

T̄ex
(A.4)

where

Tex ≡
T2 − T1

log(T2/T1)
(A.5)

is the logarithmic mean temperature of the heat release process and q̄, for a
premixed flame, is equal to the specific heat of reaction of the premixture.

For a perfect premixture, the heat of reaction is constant, and so is the
associated temperature jump T2− T1. In presence of acoustics, however, the
upstream pressure perturbation may cause a change in upstream tempera-
ture, p′1 → T ′

1. As a consequence, the mean temperature of heat release T̄ex
is also slightly altered.

(s̄2 − s̄1) + s′ =
q̄

T̄ex + T ′
ex

. (A.6)

These qualitative considerations suggest that when upstream conditions (p′1, T
′
1)

undergo small variations because of acoustic perturbations, a change in down-
stream entropy occurs, even in absence of unsteady heat release.

In order to determine the dependence of downstream entropy fluctua-
tions on upstream acoustic perturbations, we consider isentropic upstream
condition (s′1 = 0) and the linearized state equation for perfect gases, and
reformulate Eq. (A.1) as:

s′2
cp

=

(
1

λ
− 1

)
T ′

1

T̄1

= T ′
1

(
1

T̄2

− 1

T̄1

)
, (A.7)
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Figure A.2: The steady and unsteady heat transfer process represented in the T-s plane.
It should be noted that the isobaric curves in the T-s plane are not drawn to scale, but
serve only to give a qualitative description of the unsteady heat release process. In fact,
in the real scale the two curves are much closer, therefore also the change in temperature
(T1) is very small.

which shows that the entropy waves downstream are related to the temper-
ature changes occurred upstream because of acoustic fluctuations. For an
increase in upstream temperature, the associated entropy change is negative.
This is directly explained by the 2nd Law of Thermodynamics, which states
that, the higher the temperatures at which the heat addition occurs, the
lower the increase in entropy.

The interaction between acoustics and mean heat release is well described
in the T-s plane. In Fig. (A.2) two isobaric curves are represented in the T-s
plane. On the lower curve, points 1̄ and 2̄ are the states of the gas before and
after the combustion. The process takes place at mean pressure p̄. The heat
release per unit of mass is represented by the area under the curve (1̄, 2̄, s̄2,
s̄1). Starting from the initial state 1̄, a perturbation increases the pressure
to p. Since the acoustic oscillations are isentropic (see [42]), the end state is
at point 1, at temperature T1. Given the constant heat release per unit of
mass:

q̄ =

∫ s̄2

s̄1

T (s)ds|p̄ =

∫ s2

s1

T (s)ds|p (A.8)

the resultant of the combustion in presence of acoustic perturbations will
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be at point 2. It is obvious that the entropy at point 2 is lower than the
entropy at point 2̄. In order to suppress any entropy wave downstream, an
increase in heat release rate would be required, such that the final state of
the combustion is at point 2iso.

It is generally understood that the interaction between acoustics and a
heat source produces entropy waves. Our analysis shows that in the case of
a perfectly premixed flame the generation of entropy waves is only associated
with upstream acoustics and mean heat release, but not fluctuations of heat
release Q̇′! Consequently, entropy waves downstream a perfectly premixed
flame should not be identified with the fluctuations in the total heat release
rate. Moreover, these fluctuations are first order in Mach and are negligible
for M � 1. Of course, this argument assumes complete combustion as well
as the absence of heat losses due to convective or radiative heat transfer.
These results must be taken into account when discussing the role of entropy
waves in thermoacoustic instability or indirect combustion noise.
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