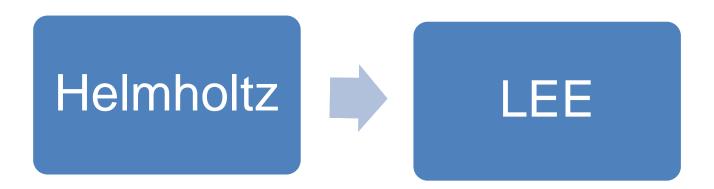
Task1.2 : Numerical study of laminar dump combustor and its cold-flow equivalent

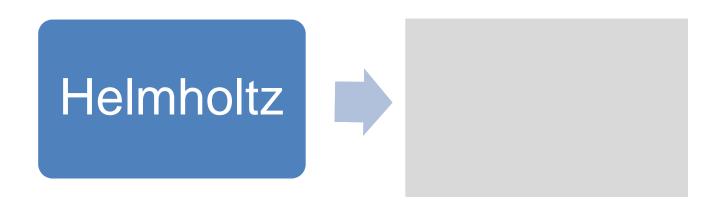
Numerical prediction of the thermo-acoustics instabilities with the mean flow effect

Wei Na, Gunilla Efraimsson, Susann Boij KTH

My steps to perform thermo-acoustic simulations



My steps to perform thermo-acoustic simulations



Governing Equations – Helmholtz Equation Solver

• Small pressure perturbations with heat release rate fluctuations:

$$\nabla \cdot (\bar{c}^2 \nabla \hat{p}) + \omega^2 \hat{p} = i\omega(\gamma - 1)\hat{q}$$

Where \hat{q} is the fluctuation of the heat release per unit volume.

How could we model heat release fluctuation?

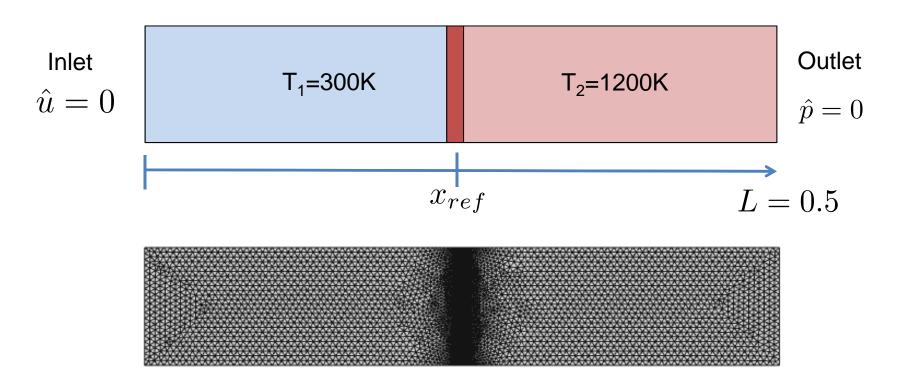
Harmonic form of the governing equation

• Inhomogeneous Helmholtz Equation solver for thermo-acoustic prediction.

$$\nabla \cdot (\bar{c}^2 \nabla \hat{p}) + \omega^2 \hat{p} = \frac{(\gamma - 1)\bar{q}(x)}{\bar{\rho}(x_{ref})\bar{u}(x_{ref}) \cdot n_{ref}} n_l(x) e^{i\omega\tau(x)} \nabla \hat{p} \cdot n_{ref}$$
where
$$\int_{n_{loc}(x)=0}^{n_{loc}(x)=\frac{n}{\delta_f} \frac{\bar{u}(x_{ref})}{\bar{q}} \frac{\gamma}{\gamma - 1} p_0}_{\gamma - 1} \text{ for } x_f - \frac{\delta_f}{2} < x < x_f + \frac{\delta_f}{2}$$
where

Validation case: 1d combustion

Numerical Model



Flame $n - \tau$ model

Validation case: 1d combustion

• Reference cases of passive and active flame

n=0.01 and $au=10^{-4}s$ in the flame model

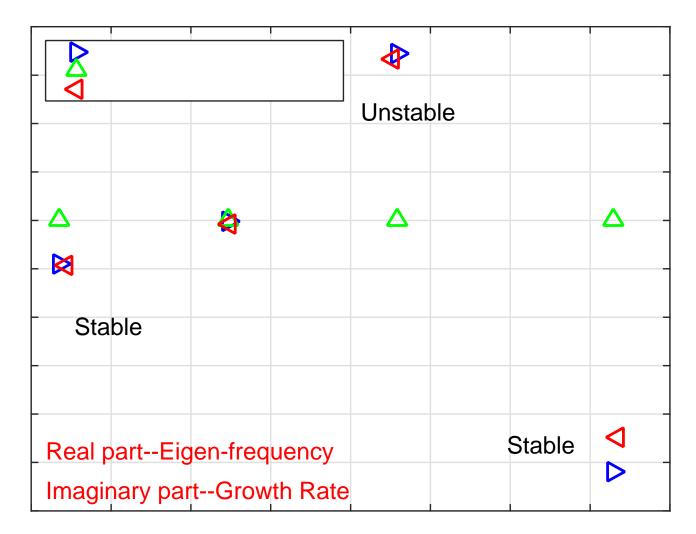
• Results for the Passive Flame, where $\hat{q}(x) = 0$

Eigen-frequency=271.80Hz

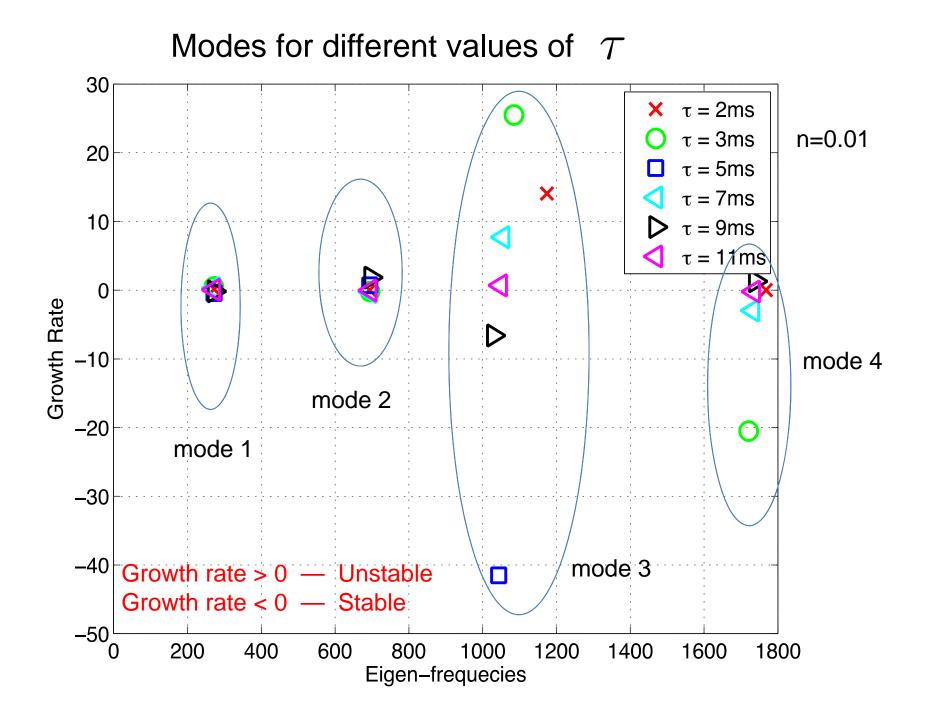
• Results for the Active Flame, where $\hat{q}(x) = \frac{\bar{q}(x)}{i\omega\bar{\rho}(x_{ref})\bar{\boldsymbol{u}}(x_{ref})}n_l(x)e^{i\omega\tau(x)}\nabla\hat{p}(x_{ref})\cdot\boldsymbol{n}_{ref}$

	Xref =0.249 m	Xref=0.250m
numerical (79279 elements)	271.56-0.088i	271.55-0.090i
theoretical	271.6-0-088i	271.6-0.088i

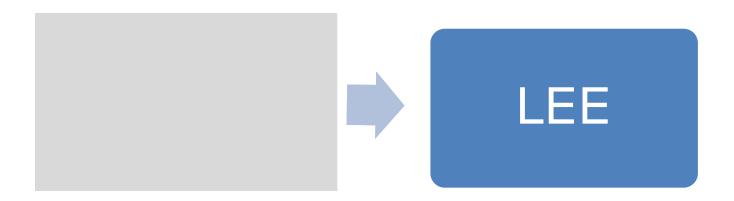
Validation case: 1d combustion



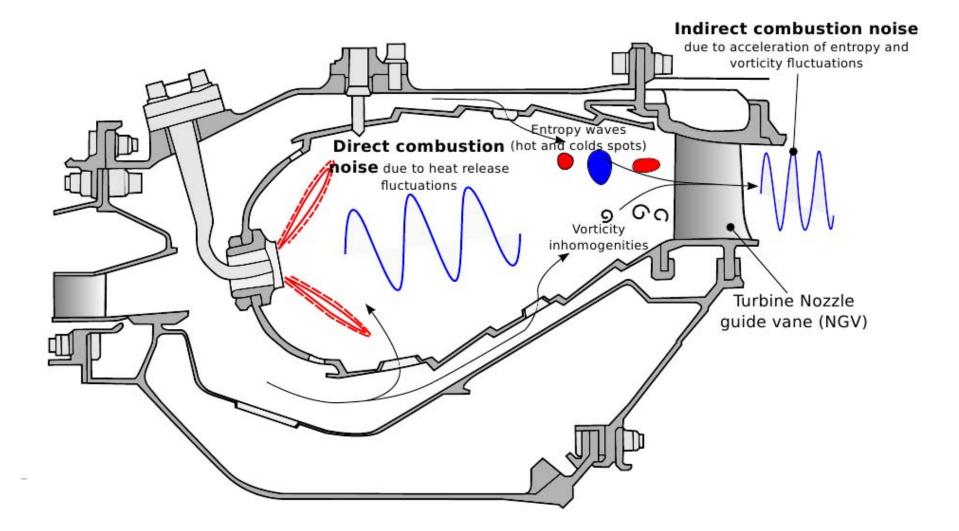
au



My steps to perform thermo-acoustic simulations



Importance of the mean flow effect



Governing Equations – Linearized Euler Equations

• Basic Equations with assumptions

Continuity Equation	$\frac{D\rho}{Dt} = -\rho \nabla \cdot \boldsymbol{u}$
Momentum Equation	$\rho \frac{D \boldsymbol{u}}{D t} = -\nabla p$
Energy Equation	$\frac{Ds}{Dt} = \frac{Rq}{p}$
State Equation	$p = \rho RT$
Entropy expression	$s - s_{st} = \int_{T_{st}}^{T} \frac{C_p(T')}{T'} dT' - Rln\left(\frac{p}{p_{st}}\right)$

Nicoud, Franck, and Kerstin Wieczorek. "About the zero Mach number assumption in the calculation of thermoacoustic instabilities." International journal of spray and combustion dynamics 1.1 (2009): 67-111.

Governing Equations – Linearized Euler Equations

• Eigenvalue matrix

The heat release amplitude \hat{q} is modeled as the linear operator of $\hat{
ho},\,\hat{m{u}}\,\,{
m and}\,\,\hat{s}$

$$\hat{q} = q_{\hat{\rho}}\hat{\rho} + q_{\hat{u}}\hat{u} + q_{\hat{s}}\hat{s}$$

$$A\nu = j\omega\nu$$

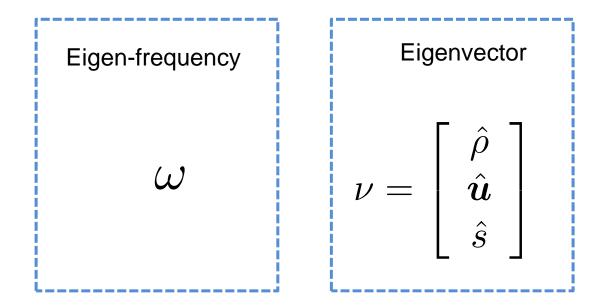
$$A = \begin{bmatrix} \nabla \cdot \boldsymbol{u_0} + \boldsymbol{u_0} \cdot \nabla & \nabla \rho_0 \cdot + \rho_0 \nabla \cdot & 0 \\ \frac{\nabla c_0^2}{\rho_0} + \frac{\boldsymbol{u_0} \cdot \nabla \boldsymbol{u_0}}{\rho_0} + \frac{c_0^2}{\rho_0} \nabla & \nabla \boldsymbol{u_0} \cdot + \boldsymbol{u_0} \cdot \nabla & (\gamma - 1)T_0 \left(\frac{\nabla p_0}{p_0} + \nabla\right) \\ \frac{R\gamma q_0}{\rho_0 p_0} - \frac{R}{p_0} q_{\hat{\rho}} & \nabla s_0 \cdot - \frac{R}{p_0} q_{\hat{\boldsymbol{u}}} \cdot & \boldsymbol{u_0} \cdot \nabla + (\gamma - 1)\frac{q_0}{p_0} - \frac{R}{p_0} q_{\hat{s}} \end{bmatrix}$$

Nicoud, Franck, and Kerstin Wieczorek. "About the zero Mach number assumption in the calculation of thermoacoustic instabilities." International journal of spray and combustion dynamics 1.1 (2009): 67-111.

Governing Equations – Linearized Euler Equations

• Eigenvalue matrix

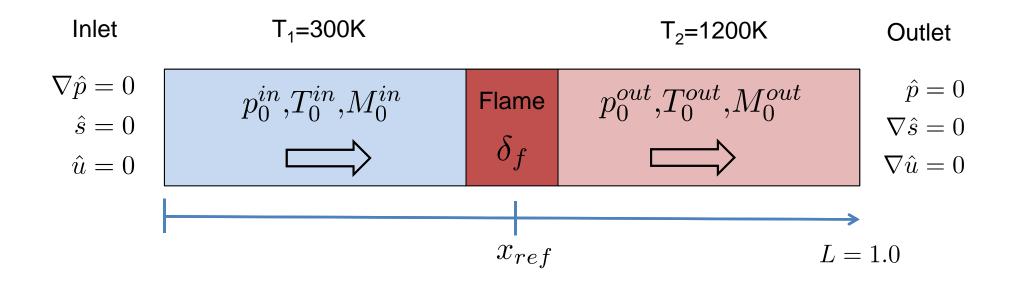
By solving the matrix
$$~~A
u=j\omega
u$$
 , we get:



Nicoud, Franck, and Kerstin Wieczorek. "About the zero Mach number assumption in the calculation of thermoacoustic instabilities." International journal of spray and combustion dynamics 1.1 (2009): 67-111.

Mean flow effect on the combustion instabilities

• Numerical model



Mean flow effect on the combustion instabilities

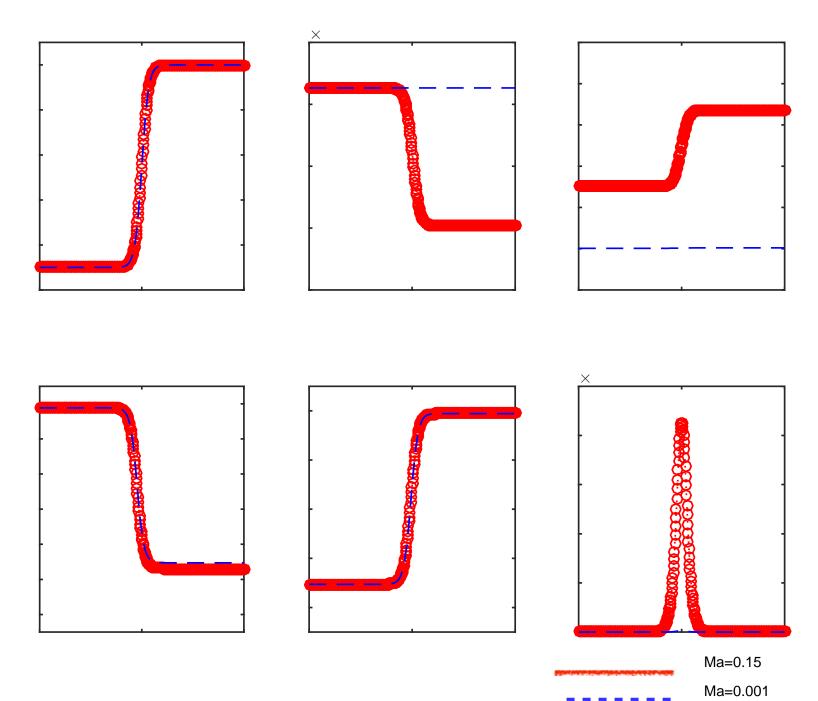
• Mean flow

The baseline flow is defined by $p_0^{in}, T_0^{in}, M_0^{in}$, to ensure:

1. constant mass flux,
$$m_0 =
ho_0 u_0$$

2. constant impulsion,
$$J_0 = p_0 + \rho_0 u_0^2$$

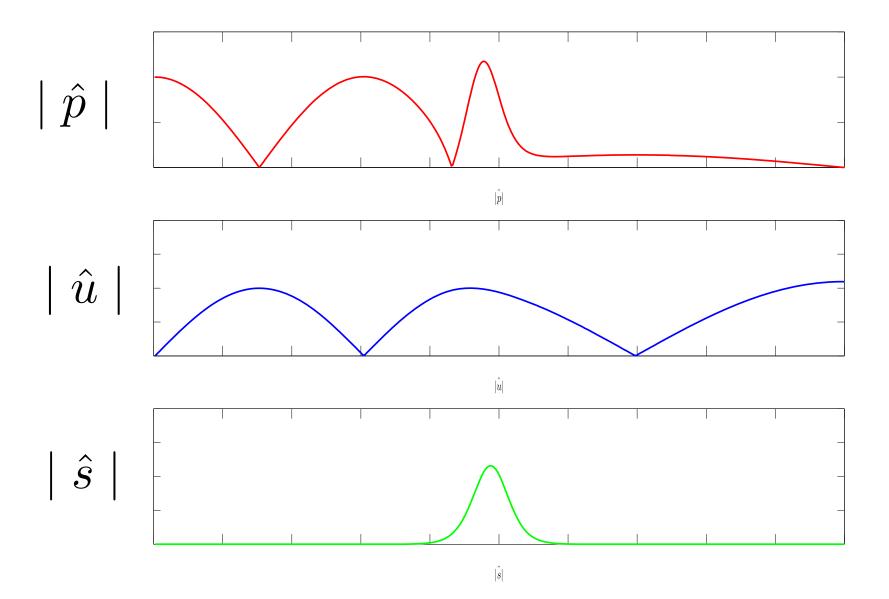
$$T_0(x) = \frac{T_0^{out} + T_0^{in}}{2} + \frac{T_0^{out} - T_0^{in}}{2} tanh\left(3\frac{x - x_f}{\delta_f/2}\right)$$



LEE results for a passive flame case compared with the Semi-analytical solution

Mach Number	Ma=0 by Helmholtz	Ma=0.001 by LEE		
Flame Thickness	$\delta_f = 0.1L$	Semi-analytical	$\delta_f = 0.1L$	$\delta_f = 0.15L$
Mode 1	139.08	136.04-0.26i	139.00-0.15i	140.46-0-15i
Mode 2	347.44	347.19-0.23i	347.45-0.23i	347.99-0.23i
Mode 3	573.11	558.34-0.26i	573.10-0.13i	580-68-0.14i

Ma = 0.001 $\delta_f = 0.1L$ the third eigenmode: f = 573.10 - 0.13i



Future Plan

- Perform more numerical cases with the numerical LEE eigenvalue solver, and test different boundary conditions as well.
- Implement the LNSE numerical eigenvalue solver.

Thanks for your attention !

