
NUMERICAL STUDY OF THE ACOUSTIC RESPONSE OF A
SINGLE ORIFICE WITH TURBULENT MEAN FLOW
Jonathan Tournadre and Paula Martínez-Lera
Siemens Industry Software, Researchpark 1237, Interleuvenlaan 68, 3001 Leuven, Belgium
email: jonathan.tournadre@siemens.com

Wim Desmet
KU Leuven, Dept. of Mechanical Engineering, Celestijnenlaan 300B, 3001 Leuven, Belgium

This paper investigates the effect of turbulent flow on the acoustic behavior of a single orifice
through numerical simulations. Two different versions of the perturbed compressible linearized
Navier-Stokes (LNS) equations, described in literature, are compared through computations based
on a high-order finite element method. The first version considers the standard double decom-
position of the field variables into steady fluid motion and harmonic perturbation. The second
one is based on a triple decomposition that also distinguishes the contribution of turbulence to
the fluctuation of the instantaneous field variables. This model requires a closure model for the
introduced stress tensor interpreted as the oscillation of the background Reynolds stresses due
to the periodic waves, which can be incorporated in the linearized equations through an eddy-
viscosity model. The turbulent viscosity as well as the base flow properties are obtained from
a two-equation Reynolds averaged Navier-Stokes (RANS) simulation. A detailed study on the
modeling parameters is carried out at different Strouhal numbers.

1. Introduction

Acoustic liners and orifice structures are extensively applied in industry to suppress noise. In tra-
ditional applications, an acoustic liner absorbs noise passively and its damping performance depends
on the characteristics of both the acoustic excitation and of the mean flow. Therefore accurate predic-
tion methods are needed for prediction purposes as well as a thorough understanding of the system’s
acoustical properties linked to the flow conditions.

The main contributions to sound attenuation in laminar flow configurations come from visco-
thermal effects, mean flow convection and interaction with entropic and vorticity modes. When sound
waves propagate within turbulent flow, turbulent mixing can result in extra acoustic attenuation due
to energy loss by turbulent absorption. This absorbing mechanism can be attributed to the turbulent
stress acting on the sound wave. The purpose of the current work is to investigate the mechanisms
of sound-flow and sound-turbulence interactions in low Mach number flow orifice configuration by
means of numerical simulations. Two different versions of the perturbed compressible linearized
Navier-Stokes (LNS) equations are employed here.

A comparison between triple (turbulent) and double (quasi-laminar) decomposed set of equations
has been made in [1] on the case of a T-junction for Strouhal St number from 0 to 4. It has been
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observed that for small Strouhal numbers St < 0.5 the behavior tends to a quasi-stationary response,
with turbulent and quasi-laminar perturbed LNS giving similar results on the scattering matrix for a
T-joint geometry, whereas it exists a frequency range where flow turbulence affects the acoustic wave
propagation. The idea of this paper is to investigate if such conclusions are the same in case of an ori-
fice under bias flow condition with a normal acoustic excitation. Such a configuration as already been
successfully studied [2] with a standard Linearized Navier-Stokes equations Finite Element Method
(FEM) solver in frequency domain, where the method has proved to successfully predict the whistling
potential of such orifices. The aim of this paper is to assess the impact of flow and flow turbulence on
the acoustic behavior of the orifice with a frequency domain LNS high-order FEM solver.

This paper describes the governing equations in Section 2 and the applied numerical technique in
Section 3. Details on the base flow and harmonic perturbations numerical setup are given in Section 4
before presenting the results from the two versions of the perturbed LNS equations.

2. The Linearized Navier-Stokes equations

The linear regime of an orifice can be simulated by the perturbed version of the full compressible
Navier-Stokes equations. In this section, we briefly discuss two approaches that differ in terms of the
flow turbulence contribution to the perturbation field.

2.1 Quasi-laminar LNS equations

The traditional approach is to consider any instantaneous variable q(x, t) as the sum of a variable
describing the steady fluid motion q̄(x) and a relatively smaller harmonic perturbation q̃(x, t). As-
suming an isentropic flow and applying such variable decomposition, the linearized Navier-Stokes
equations can be written as:
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where ρ, u and p are the density, velocity and pressure fields. µ is the dynamic fluid viscosity, δ the
Kronecker delta function and τsr is the viscous stress tensor. In absence of temperature gradient in
the investigated case, the fluid viscosity is assumed homogeneous over the entire domain. The set of
equations Eq. (1) can be written in a more compact way using a matrix formulation to define a LNS
equations operator LLNSE :
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∂t
+
∂Arq

∂xr
+ Cq +

∂

∂xr

(
∂Crsq

∂xs

)
= 0

with q = {ρ̃, ρ̄ũx, ρ̄ũy}T the vector of unknown harmonic perturbations in density and conservative
velocity components. The standard double decomposed LNS equations assume that the acoustic field
is not directly interacting with the turbulent mixing but rather represent the turbulence contribution
on the propagation of the acoustic waves solely through the turbulent mean flow quantities. It corre-
sponds to the quasi-laminar model for the perturbation Reynolds stress, where this quantity is set to
zero. Previous studies have shown that this model is accurate enough at sufficiently high frequency
but underestimates the effective acoustic damping at lower frequencies [1, 3].

2.2 Triple decomposed LNS equations

In order to model the interaction between the turbulent flow perturbations and the coherent scale,
a triple decomposition of the instantaneous variables can be performed, as introduced by Reynolds
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and Hussain [4], which adds an extra term ∂
(
ρ̄
(
〈u′su′r〉 − u′su′r

))
/∂xr to the momentum equations

compared to Eq. (1). The quantity τ̃Rsr = 〈u′su′r〉 − u′su
′
r = ˜u′su

′
r, called the perturbation Reynolds

stress, can be interpreted as the oscillation of the background Reynolds stress introduced by the pass-
ing coherent wave. This constitutes a well-known closure problem, which requires the modeling of
this quantity in terms of the harmonic perturbations to get a closed set of equations. The model used in
the present work is referred to as quasi-static turbulent model or also Newtonian eddy model [3, 4, 5],
based on the Boussinesq turbulent viscosity hypothesis, as in [1, 6]. This assumes that the transfer of
momentum caused by turbulent eddies is modeled with an effective eddy viscosity µt in a similar way
as the momentum transfer caused by molecular diffusion. In this framework, the following relation is
used:
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The way turbulence-sound interaction is accounted for in this version of the LNS equations is

therefore by adding an extra damping effect through the eddy viscosity diffusive terms. With the
previous expression for the perturbation Reynolds stress the equations set can be written in the same
matrix formulation as Eq. (2) where only the Jacobian flux matrices Ar and the matrices related to
the diffusive terms Crs are modified.

3. Finite element strategy

The matrix formulation Eq. (2) for both quasi-laminar and turbulent LNS set of equations is solved
using a high-order FEM (p-FEM) frequency domain solver. A set of Lobatto shape functions [7] is
used here for the expansion of each field variable. The harmonic perturbation quantities are assumed
to be harmonic time dependent variables that can be written as q̃(x, t) = q̂(x)e+jωt, where q̂ is a
complex quantity and ω is the angular frequency.

All walls of the physical domain are assumed impermeable and acoustically rigid. One can apply
wall slip boundary conditions (u′.n = 0) where the acoustic boundary layer is expected to play no
significant role and no-slip wall boundary condition otherwise (ũ = 0). Non-reflecting boundary
conditions are applied on the truncated boundaries of the domain in order to avoid outgoing waves
to be artificially reflected back inside the physical domain. The approach adopted in this work is
the Perfectly Matched Layer (PML) technique. The stretching function and parameters used for
the time/space change of coordinates introduced by the PML approach have been chosen according
to [8, 9, 10].

Following the work of Hamiche [11] on the standard Petrov-Galerkin stabilization approaches ap-
plied to the Linearized Euler Equations (LEE) operator for p-FEM computations, it has been observed
that the standard Galerkin/ Least-Squares (GLS) stabilization scheme allows to improve considerately
the accuracy of LNS equations computations as well [12, 13] and is applied here.

4. Sound-turbulence interaction at orifice with bias flow

4.1 Description of the orifice setup

This work focuses on the acoustic scattering of a plane wave impinging on an orifice plate with
a single hole with flow passing through. The computational domain for both Computational Fluid
Dynamics (CFD) and acoustics is depicted in Fig. 1. The physical dimensions of the setup are L0 =
0.004 m × w0 = 0.02 m for the perforation and L = 33.2w0 × H = 2w0 for the duct. The PML
domains for injection of the acoustic modes into the physical domain and non-reflective boundary
conditions have a length LPML = 0.5w0. Boundary conditions for the CFD and LNS models are
indicated as well in Fig. 1. Black lines indicate slip wall boundary condition and blue lines refer to
no-slip boundary conditions, for both flow and acoustic simulations. Prescribing slip wall boundary
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conditions for the duct allows one to disregard the development of the boundary layer inside the duct
but still implies that the plate orifice cell behaves independently from the neighboring ones. The
red color refers to the CFD domain boundaries definition applied for the incompressible Reynolds
Averaged Navier-Stokes simulations. They consist in a Vin = 13.6 m s−1 velocity inlet (dotted line)
corresponding to a Mach number M = 0.0396, pressure outlet with gauge pressure of 0 Pa (dashed
line), slip boundary condition for the duct walls and no-slip boundary condition for the orifice plate.

H
P

M
L

P
M

LCFD
 domain

L0

w0

L

x
y

Lpml Lpml

Figure 1: Overview of the 2-D plate orifice geometry

4.2 Discussion on flow results

The first step in the followed aero-acoustic hybrid methodology is to get the base flow in which
the injected acoustic wave propagates. The base flow field is computed using a steady RANS simula-
tion, carried out with the commercial CFD software ANSYS Fluent. The K-ε model combined with
enhanced wall functions is solved using the SIMPLE algorithm. The solution of the RANS simulation
is mapped onto the coarser acoustic grid, applying linear interpolation of the flow field variables and
their derivatives. The flow parameters selected for the CFD simulations are the following: ratio of
specific heats γ = 1.4, operating pressure p0 = 101 325 Pa, density ρ̄ = 1.205 kg m−3 and dynamic
fluid viscosity µ = 1.8208× 10−5 kg m−1 s−1.

Figure 2: Based flow description from K-ε RANS simulation (mapped on the acoustic mesh) - ūx
(top), ūy (center), µt (bottom).

With the inflow Mach number M = 0.0396, which corresponds to a duct height based Reynolds
number Re = 3.6× 104, the maximum magnitude of the velocity in the domain is |ū| = 38.4 m s−1,
i.e. M = 0.11, and is obtained in the region of the orifice by the formation of a jet, which expands
downstream of the perforation. Typical recirculation areas can be seen in Fig. 2 downstream of the
orifice and in the orifice itself. Note that simulations with Shear Stress Transport (SST) K-ω model
have been run as well, and that those recirculation areas and the spatial distribution of the eddy
viscosity have shown dependency on the choice of RANS model.

4 ICSV22, Florence, Italy, 12-16 July 2015



The 22nd International Congress of Sound and Vibration

4.3 Sound-turbulence interaction at orifice with bias flow

The p-FEM simulations of the coherent fields have been performed on a 2-D computational mesh
with approximately 37 000 triangular linear elements and 3th-order interpolating Lobatto polynomial
functions, yielding a system of about 487000 degrees of freedom. The size of the smallest element
is determined from the Acoustic Boundary Layer (ABL) thickness δa defined in a medium at rest
as δa =

√
2ν/ω. The value taken corresponds to δa,min = δa(f = 5000 Hz) = 3.1015× 10−5 m,

higher limit of the chosen frequency range [200 - 5000] Hz. The frequency step is 200 Hz. The mesh
elements h inside the orifice are of the size δa,min, whereas the element size is growing outside the
duct linearly up to h = 0.005 m at x = ±0.02 m and further away is constant.

Figure 3: Quasi-laminar LNS results for the real part of the density ρ̃ (left, in kg m−3) and velocity
component ρ̄ũx (right, in kg m−2 s−1) perturbations at St = 0.104 (top), St = 0.313 (center), St =
0.521 (bottom).

The coherent fields of the density ρ̃ and velocity component ũx are shown in Fig. 3 at three
different frequencies. The selected dimensionless frequencies St = 0.104, St = 0.3125 and St =
0.521 cover the range of frequencies in this study. Strouhal number values are based on the orifice
thickness Lo and the orifice flow speed by St = f Lo/ |uorifice|. The perturbed field consists of both
acoustic and vortical contributions. The propagating acoustic plane wave can clearly be identified
with its related acoustic wavelength λa = (1 + M) c̄/f , where f is the frequency and c̄ the speed
of sound. The hydrodynamic modes originating from the sound-flow interaction near the orifice
edges are characterized by their shorter hydrodynamic wavelength λh = |ū| /f . The structures of the
hydrodynamic modes observed in this study strongly depend on the Strouhal number St. Those modes
propagates rather far from the orifice section at lower frequency, and are still significant in magnitude
after several duct diameters distance. They can therefore pollute acoustic two-port measurements
performed with microphones in this region. At low Strouhal numbers, the maximum of vortices
magnitude is higher than at higher St. Over a low frequency range (estimated [600 - 1200] Hz )
additional hydrodynamic modes can also propagate through the large recirculation areas downstream
of the orifice. Results obtained with quasi-laminar LNS equations depicted in Fig. 3 show similar
phenomena as found in a previous study [2], even if they cannot be quantitatively compared because
of the differences in the flow and the dimensions.

Figure 4 shows the density perturbation ρ̃ obtained from quasi-laminar (top) and turbulent (bot-
tom) LNS simulations with two different turbulence RANS models. The choice of the RANS model
affects the predicted harmonic perturbations through the base flow properties (see quasi-laminar re-
sults) but also through the eddy viscosity. In both turbulent cases, the extra damping from the eddy
viscosity decreases the amplitude of the vortical structures appearing at the orifice edges. The K-ε
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model gives higher values of eddy viscosity inside the orifice than the SST K-ω model, which leads
to an increased impact of the turbulence on the vortices. The effect on the acoustic field itself has to
be further quantified.

Figure 4: Effect of RANS base flow choice on LNS results for the real part of the density perturbation
ρ̃ (kg m−3) at St = 0.104 (i.e. f = 1000 Hz).

Figure 5: Vorticity field Re(ω̃) (s−1) at St = 0.104 (i.e. f = 1000 Hz) for the 4 physical models.

Figure 5 shows the real part of the vorticity perturbations, defined as ω̃ = ∂ũy/∂x − ∂ũx/∂y,
in the direct vicinity of the orifice down part for four different physical models at frequency St =
0.104: LEE, quasi-laminar LNSE with slip boundary condition (without resolving the ABL), quasi-
laminar LNSE with no-slip boundary condition and resolving the ABL, and turbulent LNS with no-
slip boundary resolving the ABL (with K-ε model). The same acoustic mesh is used in all cases,
with mesh size δa,min inside the duct. This represents around three elements inside the ABL at the
frequency St = 0.104.
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Vorticity is shed at the leading edge and is convected along the base flow streamlines. The choice
of the physical model plays an important role on the local representation of the interactions between
acoustic and hydrodynamic modes in the orifice region. The addition of no-slip condition prevents the
appearance of spurious modes inside the ABL and an acoustic boundary layer is formed at the orifice
plate wall. The addition of fluid and eddy viscosity reduces the amplitude of the vorticity but the edges
have still the dominant impact on the vorticity. The representation scale in Fig. 5 has been adapted
for each case, as amplitudes of the vorticity real part change up to two orders the more diffusion is
added to the model, with LEE showing the highest values. Note that the computation of the vorticity
field is performed element by element and therefore one can notice discontinuities between elements
when their size is large enough. From the simulations results, it can be observed that not only a
refinement of the acoustic mesh is needed in the orifice region but also in the area of strong base
flow gradients caused by the orifice shear. If asymmetries in the harmonic field appear at the orifice
edges, such refinement however tends to amplify the asymmetric behavior of the downstream results.
This behavior was not observed in reference [2] with reported mesh, where mesh size growth rate
was significant also in the downstream area. The local refinement of the mesh inside the orifice
improves the accuracy of the computed perturbations since it captures better the complex sound-flow
interactions localized in the acoustic and turbulent boundary layers. If this area is not refined enough,
the error generated inside the orifice can propagate downstream in the shear region.

5. Discussion and conclusion

This paper has presented the results of the simulation of the acoustic propagation through a plate
orifice in presence of a bias flow, at low Mach Number (M=0.0396). For this purpose, a hybrid ap-
proach was applied, combining RANS steady base flow simulations and linearized acoustic operators
used to compute the harmonic perturbations. Different physical models for the flow-sound interaction
have been implemented in a frequency domain high-order continuous Finite Element Method solver
and those models were compared on the orifice plate configuration. This study compares results
coming from the isentropic version of the Linearized Euler, standard Linearized Navier-Stokes and
turbulent Linearized Navier-Stokes equations.

The presented results constitute the first step in the study of sound-turbulence interaction for an
orifice with bias flow. A detailed description of the coherent perturbations due to the acoustic excita-
tion of the orifice has been given. In the quasi-laminar assumption, the vortex growth is limited solely
by the fluid viscosity. In case of turbulent LNS equations, the vortical structures due to interaction
of acoustic and vorticity modes are damped by the extra terms coming from the added eddy viscos-
ity. From the present study, one can see that the extra diffusive terms linked to the effect of the flow
turbulence on the coherent perturbation predominantly affect the vortices propagating downstream in
the vicinity of the orifice. Nevertheless, looking at the changes in the global perturbation fields due
to the added viscosity, an impact on the global acoustic behavior can be expected. This has to be
further assessed, e.g. by scattering matrix representation. It has been noticed that the choice of RANS
models for the base flow simulation impacts considerably the spatial distribution of eddy viscosity
and affects significantly the local coherent modes. The turbulence model used for the description
of the perturbation Reynolds stress τ̃ij in this study is the Newtonian eddy model. Such model has
already shown some limitations at sufficiently low frequencies in previous studies on duct acoustic
with turbulent low Mach number flows. Alternatives, like the frequency dependent eddy-viscosity
models and non-equilibrium models of the turbulent diffusion, could be implemented in the frame
of the present p-FEM LNS equations solver to study their impact on the results. Future work will
investigate the impact of these turbulence effects on the acoustic impedance and a possible extension
of existing impedance models for orifices.
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