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Abstract

Global expressions are proposed for end-correction coefficients in micro perforated plates

(MPPs) using non-dimensional parameters. MPPs are sound absorbers with small perfora-

tion diameters so that the Stokes boundary layers fill up almost the entire perforation. Sound

absorption does not only occur within the perforation, but also takes place just outside of

it. The latter contribution plus the outside inertia effect on the transfer impedance of the

MPP is referred to as end-corrections. In order to determine them, an analytical solution

employing the very thin Stokes layer assumption has been derived. However, this assump-

tion requires empirical coefficients in the end-corrections for accurate results. To explore

the effects of various parameters a numerical model is used. This model is verified with

open-end reflection coefficient measurements. The most prominent result from this study is

that compared to plate thickness, the ratio of perforation diameter to Stokes layer thickness

(Shear number) and edge geometry affect the end-correction coefficients more significantly.

The effect of plate thickness can be neglected for practical purpose, therefore expressions for

the end-corrections in terms of Shear number and edge geometry are provided. The relative

error of these expressions are less than 3% compared to the numerical results.
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I. INTRODUCTION

Micro perforated plates (MPPs) are plates with perforations whose diameter is in the

order of a millimeter and with a low porosity, i.e. φ = O(1%)1. Due to the small diameter

size, the oscillating viscous boundary layers, i.e. Stokes layers, cover the majority of the

perforation as illustrated in Figure 1.

Figure 1: Representation of the Stokes layer (δv =
√
µ/(ρ0ω)) within a single perforation

of an MPP in 2D-axisymmetrical geometry. The parameters defining perforation diameter

(dp), plate thickness (tp), and chamfer length (cp) are also shown on the figure.

MPPs are identified as efficient absorbers by Maa1. He combines the oscillating

viscous flow in a capillary tube solution from Crandall2, which is a simplified version of the

visco-thermal derivation of Kirchhoff3, with the end-corrections of Ingard4. This way,

Maa1 derives a transfer impedance expression for a single perforation. Nevertheless,

Ingard4 bases his end-correction coefficient derivation on very thin Stokes layer
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assumption. Thus, this model does not represent the acoustic behaviour of MPPs for

Stokes boundary layers as thick as the perforation radius, i.e. at low frequencies where the

acoustic wavelength is large. It is an unrealistic assumption because it completely neglects

the edge effect of the perforation geometry.

Consequently, the analytical model of Maa1 requires empirical coefficients to match

the experimental results. Especially the coefficient for the resistive end-correction varies

between 2 and 4 in literature and this has been associated with edge geometry by Allam

and Åbom5. On the other hand, the theoretical limit value for the reactive end-correction

coefficient is reasonably accurate for most applications.

To solve this deficiency especially with the resistive end-correction coefficient, Bolton

and Kim6 have developed a numerical model in 2D axisymmetric coordinates. With this

model they simulate viscous, incompressible, oscillating flow in the time domain. They

include the end effects of the perforation by using upstream and downstream channels with

fixed length of 1 mm. They have run simulations for 21 different combinations of plate

thickness (tp), perforation diameter (dp) and porosity (φ) parameters. They proposed an

expression for the resistive end-correction coefficient in the dimensions of
[
Hz−0.5

]
.

Furthermore, Herdtle et al.7 have used Bolton and Kim’s CFD approach6 to compute

the end-corrections for tapered perforations.

In another recent study by Carbajo et al.8, a method similar to Bolton and Kim6 is
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used to study the interaction between perforations. Although the two works mentioned

above propose a valuable methodology, there is a need for a more generalized definition of

the end-correction coefficients and experimental validation of the results. Furthermore,

none of the studies discussed above consider the influence of the perforation edges on the

acoustic performance of the MPP.

In this paper both the resistive and reactive end-correction coefficients are evaluated

by means of an axisymmetrical, incompressible flow model in the frequency domain, and

validated with experiments, also including the influence of the shape of the perforation

edges. Although our approach is analogous to that of Bolton and Kim6, our results are

significantly different in the following aspects. Firstly, we use non-dimensional parameters

to express end-correction coefficients so that the results are generalized and useful for the

design of MPPs with circular perforations. Secondly, we solve linearized Navier-Stokes

equations numerically in the frequency domain. Moreover, we make sure that the acoustic

transfer impedance values are calculated independent of the inlet and outlet channel

length. Finally, we investigate the effect of the edge shape geometry on the end-correction

coefficients. In other words, our aim is to provide a consistent base for the calculation of

the transfer impedance in MPPs with circular holes in the linear regime.

On the other hand, we limit our study to certain aspects. First of all, we only focus

on low perforation rates (φ = O(1%)) so that we can ignore hydrodynamic interaction
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between perforations1;5;6. Secondly, although slit shaped MPPs apper to be quite

promising5, here we concentrate on circular perforation geometries so that they can be

represented in 2D axisymmetrical geometry in numerical model. Finally, we carry out

measurements with a single perforation diameter for all samples.

II. THEORETICAL BACKGROUND

The transfer impedance of an MPP is defined as:

Zt =
∆P̂

φÛp
, (1)

where ∆P̂ is the plane wave pressure difference across the plate, φ is the porosity and Ûp is

the volume flow rate divided by the perforation area. From experimental or simulated

data, plane wave pressure is obtained on each side of the plate by extrapolating a plane

wave model up to the surface of the plate. When Ûp is multiplied with φ, we get plane

wave normal velocity before (or after) the plate. Please note that the circumflex accent (ˆ)

indicates complex quantity throughout the paper.

For MPPs with circular perforations, the transfer impedance with a finite plate

thickness is modeled by Maa1 as follows:

Zt = jωtpρ0

[
1− 2

Sh
√
−j

J1(Sh
√
−j)

J0(Sh
√
−j)

]−1

+2αRS + jδωρ0
dp
2
.

(2)

using the exp(jωt) convention.
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The first term in the right-hand side of Eq. (2) defines the oscillating fluid flow within

the perforation where ω = 2πf is the radial frequency, ρ0 is the density of air (1.184 kg/m3

@20◦C, 1.205 kg/m3 @25◦C), j is the imaginary number
√
−1, Jn is the Bessel function of

1st kind of order n and Sh is the Shear number which is defined9 as Sh = dp
√
ωρ0/(4µ)

where µ is the dynamic viscosity of air (1.82× 10−5 kg/ms @20◦C, 1.84× 10−5 kg/ms

@25◦C).

The second term in the right-hand side of Eq. (2) is the resistive and the last one is

the reactive (inertial) end-correction expression, respectively. RS is the surface resistance

on one side of the plate which is calculated by RS = 0.5
√

2µρ0ω. Moreover, the

non-dimensional resistive and the reactive end-correction coefficients are denoted by α and

δ in Eq. (2). The end effects become very important in plates with normalized thickness,

t∗ = tp/dp, in the order of unity.

Even though Maa1 has proposed his analytical model for the sharp-edge perforation

case, the presence of end-correction coefficients in the model provides the flexibility to

include different edge types.

We start our study with the sharp-edge case and then, extend this study for various

types and combinations for chamfered edges. We expect the behaviour of the chamfered

edges to be similar to those with rounded edges. Chamfers are preferred to roundings due

to manufacturing accuracy.
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III. NUMERICAL SET-UP

The numerical part of the study contains a model tailored to a single perforation. We

assume a viscous, incompressible flow in 2D axisymmetric coordinates. To compare the

results with Maa’s linear model1 and extend it further, we keep our calculations in the

linear regime also. As a result, in the model, we solve the following linearized

incompressible Navier-Stokes equations in the frequency domain:

∂ûr
∂r

+
ûr
r

+
∂ûz
∂z

= 0, (3a)

jρ0ωûr +
∂p̂

∂r
− µ

(
∂2ûr
∂r2

+
1

r

∂ûr
∂r

+
∂2ûr
∂z2

)
= 0, (3b)

jρ0ωûz +
∂p̂

∂z
− µ

(
∂2ûz
∂r2

+
1

r

∂ûz
∂r

+
∂2ûz
∂z2

)
= 0, (3c)

where r and z represents the radial and axial axes components; ρ0 represents the base flow

density; û and p̂ represent acoustic velocity and pressure. In COMSOL Multiphysics R©,

Eq. (3) is discretized using finite elements in the Coefficient Form PDE module of the

program. We used quadratic elements in our simulations. Since the flow is laminar, no

turbulence model was needed in the simulations.

A schematic drawing of the computational domain and the boundary conditions used

are presented in Figure 2.

As can be seen from Figure 2, the geometry covers both inner and outer regions of the
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Figure 2: Computational domain of a single perforation. |AB| harmonic velocity inlet; |BC|

and |FG| slip wall; |CD|, |DE| and |EF| no-slip wall; |GH| viscous-free, zero-pressure outlet

and |AH| radial symmetry axis.

perforation. The outer region is the upstream / downstream channel and its diameter is

taken as D = dp/
√
φ. Doing that, we make sure the effect of the perforation is negligible at

the inlet and outlet boundaries. During the course of the simulations we saw that, an

increase of 33% in the channel length results with a change of less than 0.001% in the

pressure amplitude which also indicates that a long enough computational domain was

used. A typical pressure distribution obtained by solving linearized incompressible

Navier-Stokes equations is shown in Figure 3.

We calculate the transfer impedance dividing the acoustic pressure difference between

two sides of the perforation by the volume flux per perforation area, as stated in Eq. (1).

The relevant acoustic pressure at one side of the perforation is obtained by linear

extrapolation, assuming an incompressible uniform flow, from the inlet (or the outlet)

boundary of the computational domain to the surface of the perforation10. In our
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incompressible model the pressure difference (∆P̂ ) is therefore given by

∆P̂ = P̂u − P̂d − j2Lρ0ωÛ, (4)

where P̂u = p̂(zAB) and P̂d = p̂(zGH) are the upstream and the downstream pressures at the

inlet and the outlet of the numerical domain, respectively. Furthermore, Û is the imposed

uniform inlet velocity of the model and L is the length of the upstream and downstream

sections. The correction given in Eq. (4) ensures that ∆P̂ is independent of the upstream /

downstream channel length.

z-Axis

r-
A
x
is

Pa

Figure 3: A typical pressure amplitude distribution around a sharp-edged perforation. (Color

online)

In order to avoid the need for resolving sharp edges, we employ fillets with small

radius, rf , at the edge points. The simulations are repeated for different fillet radius to
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perforation diameter values, rf/dp, such as 6.25× 10−3, 3.13× 10−3 and 1.56× 10−3.

Observing the change is linear, we extrapolate Zt to the rf = 0 case and approximate the

limit value as accurately as possible.

Using this approach, not only sharp-edged perforations but also other types of hole

geometries are investigated in our study. The schematic representations of these geometries

are shown in Figure 4.

Figure 4: Egde geometries investigated in this study: (I) sharp-edge; (II) both ends cham-

fered; (III) one end chamfered; (IV) punched hole geometry; (V) inverse-chamfered.

In all the cases shown in Figure 4, the sharp corners are taken care of with the

method mentioned above to avoid numerical singularity.

With COMSOL Multiphysics R©’s built-in mesh generation tool, we build a mesh with

non-constant distribution to minimize the number of grid points. This results with a
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combination of triangular and rectangular mesh types. Although triangular mesh

dominates the domain; in the vicinity of the boundaries with no-slip BC, rectangular mesh

type is present. An example for this distribution is shown in Figure 5.

Figure 5: An example of how non-constant distribution of the mesh looks like around the

both-sides-chamfered perforation. Note that the mesh is finer in the vicinity of the edges.

(Color online)

A mesh study resulted in that, for the mesh used, the difference in the value of Zt is

less than 0.02% compared to the successive finer grid level.

IV. EXPERIMENTAL VERIFICATION

The verification of our numerical model is done by comparing 4 different cases with

experimental results. In all these cases, we use samples with a single perforation as in the

numerical model. Their properties are given in Table 1 and their photo is provided in
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Figure 6.

Table 1: Sample Specifications

Sample Name dp [mm] tp [mm] φ Edge Type cp [mm]

Sample I 4.20± 0.05 4.00± 0.01 0.71% Sharp N/A

Sample II 4.20± 0.05 4.00± 0.01 0.71% One-side-chamfered 0.35± 0.05

Sample III 4.20± 0.05 4.00± 0.01 0.71% Both-sides-chamfered 1.00± 0.05

Sample IV 4.20± 0.05 4.00± 0.01 0.71% Punched 1.00± 0.05

The samples introduced in Table 1 are placed at the end of a 1 m long impedance

tube. The tube is made of aluminium with an inner diameter of 50 mm and a wall

thickness of 10 mm. A photo and a schematic drawing of the system are given in Figure 7.

We use NI PCIe-6361 X-Series data acquisition card with 16 analog input and 2

analog output channels. We generate and record signals using LabView R©. We use 1 output

channel for the loudspeaker and 6 input channels for the microphones. The type of the

microphones is BSWA MPA416 with a sensitivity of 50.45 mV/Pa. They are equally

distributed by a distance of 175 mm. This setup employs the algorithm described in

Figure 8 to perform reflection coefficient measurements.

For the calibration of the microphones, we perform a one-time measurement before

the others. Using a calibration mount specially designed for this purpose, we place all the
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Figure 6: MPP samples used in the impedance tube to verify the numerical model. Samples

I, II and III require a sample holder while Sample IV has it built-in.(Color online)

microphones at the same distance from the loudspeaker and the closed end tube

termination. The idea is that: for each frequency step, every microphone should read the

same complex pressure value according to the plane wave assumption. As a result, we

select one of the microphones as the reference and force other microphones to have the

same value for the same frequency. We do this by calculating the calibration coefficients for

each frequency setup. This procedure is a relative calibration technique. However, since we

perform reflection coefficient measurements, an absolute calibration is not necessary. Please

note that, in this technique, the arbitrarily selected reference microphone should remain

the same throughout all the measurements. Finally, the microphones are relatively

calibrated for the frequency range [100, 700] Hz. Please note that, although the tube allows
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(a) Impedance tube (b) Schematic drawing of the setup

Figure 7: The setup used for verification of the numerical model. (a) The photo of the setup,

(b) schematic drawing of the setup: 1: the impedance tube, 2: loudspeaker, 3: microphones,

4: MPP sample, 5: (hollow) sample holder, 6: microphone amplifier, 7: loudspeaker amplifier,

8: analyzer and computer.(Color online)

us to carry on measurements approximately up 3.4 kHz; considering the sample dimensions,

the viscous effects are expected to be small enough to be neglected for f > 700 kHz

(Sh > 35). Moreover, above this frequency, the influence of the finite compliance of the

microphones becomes significant11. We did not correct for this effect.

In the measurements of MPPs, after the pressure data from the microphones are

saved, we calculate the corresponding reflection coefficient for each frequency step by

another script we built. This script omits the first and last 3 seconds from the

measurements to avoid transient effects and uses the calibration coefficients obtained

before.
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Figure 8: Measurement algorithm.

Both of the scripts calculating the calibration and reflection coefficients employ a

lock-in method12. This method correlates the input signal to the output to calculate the

measurements in the Fourier domain. The advantage of this method over FFT (or DFT) is

that it ensures there is no spectral leakage.

The calculation of the reflection coefficient is based on the plane wave assumption. In

other words, within the tube, all the points at position z are assumed to have the same

complex pressure amplitude p̂(z) and this can be decomposed into right, p̂+, and left, p̂−,

traveling pressure waves such as:
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p̂(z) = p̂+ exp(−jkcz) + p̂− exp(jkcz), (5)

where kc is the complex wave number taking visco-thermal effects into account and

described by Peters et al.9 as follows:

kc =
ω

c0

[
1 +

1− j√
2Sh

(
1 +

γ − 1

Pr0.5

)]
− ω

c0

[
j

Sh2

(
1 +

γ − 1

Pr0.5
− 1

2
γ
γ − 1

Pr

)]
,

(6)

where Pr is the Prandtl number and γ is the heat capacity ratio. In our calculations, we

omit the term with Sh2 since its value does not exceed 2% of the first order term in Eq. (6).

Introducing this complex wave number into the method of least square fit for 6

microphones by Jang and Ih13, the plane wave decomposition is obtained and the reflection

coefficient can be expressed as

R =
p̂− exp(jkcz)

p̂+ exp(−jkcz)
. (7)

In Figure 8, one can see a 15-minute delay between two successive 20-step

measurements. The reason of this is to restore the uniform temperature in the tube. This

is due to the fact that measurements are affected by the change in the speed of sound, c0.

For 20 frequency steps we have 40 wave amplitudes as unknown, plus c0 as an additional

unknown. The signals of the 6 microphones provide a set of 120 equations for those 41
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unknowns, which is solved by the least square method proposed by Aurégan14. For the

completely closed-end case, the deviation of the measured reflection coefficient from the

theoretical value R = 1.000 is less than 0.3%.

We measure the transfer impedance by the following procedure:

i. Measure the open end reflection coefficient of the open impedance tube without the

sample plate, ROE, and calculate the radiation impedance, ZR, using

ZR = ρ0c0(1 +ROE)/(1−ROE).

ii. Place the sample plate to the end, measure the reflection coefficient of sample-loaded

end, RP , and calculate ZP = ρ0c0(1 +RP )/(1−RP ).

iii. Obtain the transfer impedance of the plate, Zt, by subtracting the radiation impedance

from the sample-loaded end impedance: Zt = ZP − ZR.

The samples are attached in between the impedance tube and the hollow sample

holder (see Figure 7), whose inner diameter is the same as the tube and length is 1.5 times

the diameter. Since tube terminations in both sample-loaded and open-end (without the

sample) cases are identical and the surroundings is the same, we expect the radiation

impedance values to be the same. Besides, one should note that since φ ∼ O(1%) for the

samples, ZR is expected to be much lower than ZP and the possible error is negligible in

Zt = ZR − ZP .
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Being aware of the non-linearity issues in the MPP measurements, we employ an

empirical procedure to avoid such effects. We decrease the excitation amplitude gradually

at the lowest frequency of interest. When two successive measurements give the same

reflection coefficient value, we carry out the measurements for the frequency range with

that particular amplitude. This is based on the definition of Strouhal number,

Sr = φωdp/|Û |, by Ingard and Ising15. According to this definition if Sr > 1, we do not

observe non-linear effects in the MPPs and Sr increases with increasing frequency. We

furthermore verified that Sr remains larger than unity for all our measurements.

Comparison between the numerical model and the experiments is done in terms of

non-dimensional end-correction coefficients α and δ. We calculate these coefficients by

rearranging Eq. (2);

α =
(<{Zt} − <{Zt}th)φ

2RS

, (8a)

δ =
(={Zt} − ={Zt}th)φ

ρ0ωdp/2
, (8b)

where subscript th represents the word theoretical and this corresponds to the transfer

impedance calculated by means of the theory by Crandall2. In other words, the theoretical

transfer impedance of a perforation is calculated by Eq. (2) without the end-corrections

(α = δ = 0). His model takes into account only the inside of the perforation of length teff .
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This effective thickness can be calculated as teff = tp − ncp with cp is the chamfered length

and the coefficient n is the edge type factor whose values for different edge types are listed

in Table 2.

Table 2: Factor n for different edge geometries.

Edge Type n

Sharp 0

One-Side-Chamfered 1

Both-Sides-Chamfered 2

One-Side-Inverse-Chamfered −1

Both-Sides-Inverse-Chamfered −2

Punched 0

When employing Eq. (8) with the values of Zt determined from measurements, one

obtains experimental values for α and δ. Similarly, in order to obtain numerical

end-correction coefficients, Zt calculated by simulations should be used.

For the samples introduced in Table 1, the comparison between numerical and

experimental end-correction coefficients is shown in Figure 9.

In this paper, we concentrate on samples whose perforation diameter is rather larger

than a typical MPP for the verification of our numerical model. This results in a higher Sh
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(a) Sample I (b) Sample II (c) Sample III (d) Sample IV

Figure 9: Comparison of the resistive and reactive end-correction coefficients of samples with

different edge geometries: � Experimental, � � � Numerical results.

number in the frequency of interest, i.e. Sh > 10. The numerical model presented here has

been already validated in the low Sh number region, 1 < Sh < 14, for sharp edges16. In

this previous study imperfections in the perforation geometry of some of the samples are

observed, with holes that seem to have a triangular rather than circular shape. We

concluded that, to ensure a high accuracy of the hole geometry and edge shape larger hole

diameter and thickness values should be used. As a result, the samples described in

Table 1 are produced and tested.

Although the open-end impedance measurement is easy to apply, it has a

disadvantage where the reflection coefficient value approaches unity (recall

ZR = ρ0c0(1 +ROE)/(1−ROE)). A very small disturbance when |R| ≈ 1 can lead to large
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errors on transfer impedance. Thus, in all measurements we have large uncertainty above

450− 500 Hz and we therefore present results up to Sh ≈ 27. It can be concluded from the

results in Figure 9 that the numerically determined end-correction coefficients are in good

agreement with the experimental values for the range of Sh numbers considered. Therefore

the numerical model proposed is validated and will be used in the following section to

calculate the end-correction coefficients for perforations with different types of edges.

V. RESULTS

After experimental verification, we use our numerical model to broaden the study for

1 < Sh < 35. Doing so, we aim to cover the important Sh number region, 1 < Sh < 10 for

the MPPs according to Maa1 and extend it to theoretical limits where the end-correction

coefficients are comparable with our results. We divide our study in three main classes

according to the perforation edge geometry.

A. Perforations with sharp edges

The properties of the numerical cases designed to cover the Sh number range of

interest are presented in Table 3.

With the use of Eq. (8), we calculate α and δ from the simulations for each case. To

observe the effect of the thickness of the Stokes layer on these coefficients, we present the

results from all cases in two graphs: α vs. Sh and δ vs. Sh, which can be seen in Figure 10.
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Table 3: Properties of the sharp-edge cases investigated numerically

dp [mm] tp[mm] φ

Case 1 0.3 1.0 0.77%

Case 2 0.8 0.4 0.74%

Case 3 0.8 1.0 0.74%

Case 4 0.8 8.0 0.74%

Case 5 1.6 1.6 0.72%

Case 6 4.2 4.0 0.71%

From Figure 10, we observe a strong dependence on Sh for both α and δ. Assuming

that Sh is the only parameter defining the end-correction coefficients in sharp-edge

perforations, we propose a practical expression for computing α and δ for 1 < Sh < 35 and

Sr > 1 as follows;

αs = 5.08Sh−1.45 + 1.70, (9a)

δs = 0.97 exp(−0.20Sh) + 1.54, (9b)

where subscript ‘s’ represents the perforations with the sharp edge geometry.

The expressions given in Eq. (9) consists of fit formulas from 411 data points with a

quality of R2
α = 0.9995 and R2

δ = 0.9960. The curves calculated using Eq. (9) are compared
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to numerical data in Figure 10.

(a) Resitive end-correction coef. (b) Reactive end-correction coef.

Figure 10: End-correction coefficients plotted as functions of Sh: n Case 1, l Case 2,

s Case 3, t Case 4, Q Case 5, u Case 6 and — proposed fit formula.

We extend our investigation on sharp-edged perforations with the non-dimensional

plate thickness, t∗ = tp/dp. This time, we perform a surface fit with two independent

parameters to include thickness effect in α and δ. The updated expressions with the wall

thickness for the end-correction coefficients for the perforations with sharp edges become;

αs = 5.08Sh−1.45 + 1.70− 0.002/t∗, (10a)

δs = 0.97 exp(−0.20Sh) + 1.54− 0.003/t∗. (10b)

The new fits given in Eq. (10) have a marginally better quality, R2
α = 0.9995 and

R2
δ = 0.9961, so we conclude that α and δ do not significantly depend on t∗ for t∗ ≥ 0.5.

B. Perforations with chamfered edges
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We classify chamfers in two types depending on if it reduces or increases the effective

plate thickness, teff . The chamfered edge with 45◦ angle reduces teff and is defined as

normal where the one with 135◦ angle increases teff and is defined as inverse chamfer.

Recall that teff = tp − ncp where n can be obtained from Table 2. While calculating the

theoretical transfer impedance by Crandall2, effective thickness should be used.

Even though they have different profiles at the perforation edges, the definition of the

chamfer length, cp, and the non-dimensional chamfer length, c∗ = cp/dp, are still the same

for both normal and inverted chamfers. The properties of the numerical cases designed for

investigating chamfers can be seen in Table 4. The limit c∗ = 0 is the case of sharp-edge

and should be taken into account to relate the results with the previous part of the study.

For this reason, Case 6 is included in both normal and inverse chamfer types.

For this part of the study, we consider 4 different cases. These cases include the

smallest and largest non-dimensional chamfer length limits, i.e. c∗ = 0 and c∗ = t∗/2,

respectively. The properties of these numerical cases can be seen in Table 4.

Including the sharp edge geometry in both chamfer types, we have 244 data points for

each coefficient in both types. For perforations with chamfered edges, the best surface
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Table 4: Properties of the chamfered-edge cases investigated numerically

dp[mm] tp[mm] φ cp[mm] Type

Case 7 4.2 4.0 0.71% 0.35 Normal

Case 8 4.2 4.0 0.71% 1.0 Normal

Case 9 4.2 4.0 0.71% 2.0 Normal

Case 10 4.2 4.0 0.71% 0.50 Inverse

Case 11 4.2 4.0 0.71% 1.0 Inverse

Case 12 4.2 4.0 0.71% 2.0 Inverse

representing the distribution of the points for α and δ are in 13 < Sh < 35 and Sr > 1.

αc = 5.08Sh−1.45 + 1.70 + 1.18c∗1.74Sh−0.26, (11a)

δc = 0.97 exp(−0.20Sh) + 1.54

+ 0.97c∗0.56 exp(−0.01Sh),

(11b)

where the subscript ‘c’ represents the perforations with the chamfered edge geometry.

The quality of these fits can be quantified by R2
α = 0.9808 and R2

δ = 0.9945.

The same study on perforations with inverse-chamfered edges results with the
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following α and δ fits in 13 < Sh < 35 and Sr > 1 as;

αic = 5.08Sh−1.45 + 1.70 + 0.08c∗0.17Sh0.36, (12a)

δic = 0.97 exp(−0.20Sh) + 1.54

− 0.17c∗0.41 exp(0.02Sh),

(12b)

where the subscript ‘ic’ denotes the inverse-chamfered edge geometry.

For these fits, we calculate R2
α = 0.9986 and R2

δ = 0.9883.

C. Combinations of edge geometries

Neither sharp nor both-sides-chamfered edge geometries are easy to manufacture in

mass production of the MPPs. Hence we consider two geometries that can be used as

practical approximations. These are one-side chamfered and punched hole geometries,

which can be seen in Figure 4.

In this part of the study, we run simulations for perforations with smaller diameters to

cover lower Sh number region. The properties of the cases we simulated are listed in

Table 5.

1. One-side-chamfered

This geometry is considered for the cases where the perforations are opened with drills

when supported by an additional material from behind. One side of the perforation has the

chamfer geometry where the other end is sharp. Referring to the linearity, we propose the
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Table 5: Properties of the numerical cases to verify the proposed fit. Cases C1 to C4

represent one-sided-chamfered edges where Cases P1 to P4 represent punched hole geometry.

φ = 0.71% for all cases.

dp[mm] tp[mm] cp[mm]

Case C1 0.3 1.0 0.025

Case C2 0.9 1.0 0.075

Case C3 1.5 1.0 0.125

Case C4 4.2 4.0 0.350

Case P1 4.2 1.0 0.071

Case P2 4.2 1.0 0.214

Case P3 4.2 1.0 0.357

Case P4 4.2 4.0 1.00

end-corrections can be a combination of both cases mentioned as

α = (αs + αc)/2, (13a)

δ = (δs + δc)/2, (13b)

where subscripts s and c denote end-corrections for sharp-edges and chamfered edges

respectively, which is calculated from Eqs. (9) and (11). We assume, these expressions hold
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for the lower Sh region as well since the governing physics is the same and we use

non-dimensional numbers. To check that assumption, we select c∗ = 0.083 as in Sample II,

and compare the results of this linear combination with numerical simulations in terms of

relative percent error, εr. We calculate it for α as follows: εr = 100|αnum − αfit|/αnum.

Replacing α with δ, one obtains the same error definition for the reactive end-correction

coefficient. These error plots are provided in Figure 11.

(a) Resitive end-correction coef. (b) Reactive end-correction coef.

Figure 11: The relative percent error of the end-correction coefficients obtained by the

proposed fit wrt numerical simulations in one-side-chamfered edge profile. � n � Case C1,

� l � Case C2, � s � Case C3, and � t � Case C4.

2. Punched hole

The idea behind investigating this geometry for is to approximate the perforations

opened by punching the plate. This geometry consists of a chamfered edge and an
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inverse-chamfered edge.

Similar to the one-side-chamfered geometry, the end-correction coefficients of this one

can be calculated as

α = (αc + αic)/2, (14a)

δ = (δc + δic)/2. (14b)

where subscript ic stands for inverse-chamfered and can be calculated using Eq. (12). The

relative percent error between the numerical results and the proposed fit is shown in

Figure 12.

(a) Resitive end-correction coef. (b) Reactive end-correction coef.

Figure 12: The relative percent error of the end-correction coefficients obtained by the

proposed fit wrt numerical simulations in punched hole geometry. � n � Case P1,

� l � Case P2, � s � Case P3, and � t � Case P4.

Please recall that one-sided-chamfered edge is composed of sharp edge and (normal)
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chamfered edge types. Similarly, punched hole geometry is composed of (normal)

chamfered edge and inverse egde types. Hence, verifying the linear combination of these

edge types with numerical results is a compact verification of all the fits we propose. From

Figures 11 and 12 we see that even for low Sh number region, the fits and the numerical

results are in accordance within less than 3% in the Sh number region of interest. Hence,

the assumption for the lower Sh number region holds and the fits we propose can be used

for calculating end-correction coefficients of MPPs for Sr > 1.

VI. CONCLUDING REMARKS

This study proposes expressions for dimensionless end-correction coefficients, α and δ

in MPPs based on numerical analysis; whose results are verified by experiments. Using the

numerical model we built, different edge geometries such as sharp, chamfered, inverse

chamfered edges and their linear combinations are investigated.

We measure the transfer impedance with the open-end method. Yet, when the

amplitude of the reflection coefficient of the sample is close to 1, the method becomes

prone to errors. For this reason, the measurements with the MPP samples could go up to

450-500 Hz. This corresponds to Sh ≈ 27 for samples dp = 4.2 mm. If studying with higher

Sh is required, one should employ another experiment technique.

The numerical results show that the plate thickness has negligible effect on

end-correction coefficients. We also conclude that α and δ strongly depend on Sh number
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and the edge geometry. These arguments have been tested in a large variety of

non-dimensional thickness range such as 0.5 < t∗ < 10.

Sharp-edge profile is an important comparison case with the theory. It is reported in

the literature5 that, α can be taken either 2 or 4. Our results show that α value can be out

of this interval depending on the Shear number. Moreover, with increasing Sh number, we

observe an asymptotic approach in end-correction coefficients. These are 1.70 for α and

1.54 for δ. Experiments with the samples also support this statement. Please recall Ingard4

proposed α to be 2 empirically; our result, α = 1.70, is close to this. Although Morse and

Ingard17 proposes a purely analytical solution for α, it does not show the asymptotic

behaviour that we see in the experiments. On the other hand, both Morse and Ingard17

and Pierce18 agree on the theoretical limit for δ = 1.57 in very thin plates. This value is

comparable with our findings, δ = 1.54.

The chamfered-edge geometry increases α and δ compared to sharp-edge geometry.

Yet, the overall transfer impedance value decreases in presence of chamfers. This is due to

the fact that the viscous friction is dominant in the narrow part of the perforations, which

is defined by teff in this study, and chamfers reduce this effective plate thickness. On the

other hand, inverse-chamfered edges increase teff , resulting with a higher transfer

impedance compared to sharp-edges. In inverse-chamfers, the fluid particles must follow a

streamline making a 135◦ turn. This increase the resistance of the edge but makes it harder
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for fluid particles to oscillate in and out of the perforation. As a result, compared to

sharp-edge geometry, α increases but δ decreases in inverse-chamfered edges.

Since the entire investigation is carried out in linear regime, we combine

end-correction coefficients for sharp-edge, chamfered-edge and inverse-chamfered-edge

geometries linearly to obtain α and δ for one-side-chamfered edge and punched hole

geometries. Although the fit is obtained from data in the region 13 < Sh < 35, the

end-correction coefficients obtained with the proposed expressions are in good agreement

with the numerical results even for the region 1 < Sh < 13. Moreover, the expressions

proposed for chamfered geometries are designed to reduce into expressions for sharp-edge

profiles when c∗ = 0 is selected. Consequently, the expressions we offer are global and the

error between them and the numerical results are less than 3% for 1 < Sh < 35.
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VII. * Figure Captions

1 Representation of the Stokes layer (δv =
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also shown on the figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Computational domain of a single perforation. |AB| harmonic velocity inlet;

|BC| and |FG| slip wall; |CD|, |DE| and |EF| no-slip wall; |GH| viscous-free,

zero-pressure outlet and |AH| radial symmetry axis. . . . . . . . . . . . . . . 9

3 A typical pressure amplitude distribution around a sharp-edged perforation.
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4 Egde geometries investigated in this study: (I) sharp-edge; (II) both ends
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6 MPP samples used in the impedance tube to verify the numerical model.
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