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Stepped sine measurements are often performed in environments where there is a large contribu-
tion of background noise to increase the signal to noise ratio and obtain more accurate measure-
ments. Due to time constraints or to guarantee the stability of the investigated system a single
long measurement is often taken and the statistical properties of the results are based on this sin-
gle measurement. When the background noise is not completely stochastic in nature, for example
there is a tonal component present, the obtained statistics can lead to the wrong results because
the underlying assumptions to derive these statistics are violated.

In this paper an expression is derived to estimate the uncertainty in a stepped sine measure-
ments based on the background noise spectrum. In this way an accurate estimate of the uncertainty
can be obtained even when it is not possible to perform enough statistically independent measure-
ments. The results are based on synchronous demodulation using the Hilbert transform and the
expressions are derived both in the continuous and discrete time domain so that they can be easily
applied.

1. Introduction

Stepped sine measurements are often performed in environments where there is a large contribu-
tion of background noise to increase the signal to noise ratio and obtain more accurate measurements.
Due to time constraints or to guarantee the stability of the investigated system a single long measure-
ment is often taken and the statistical properties of the final results are based on this single measure-
ment. Unfortunately it is often impossible to measure enough independent sequences because the
measurement times become too long, jeopardizing the time-invariant behaviour of the system.

In a single sine excitation measurement, the excitation signal is time-invariant and deterministic.
Furthermore measurements are often performed in environments where tonal noise components are
present. Therefore the statistical properties derived from the tools in signal processing based on non-
deterministic and time-variant signals such as the coherence function become difficult to correctly
interpret.

As an example, in Fig. 1 the real and imaginary parts of the estimated transfer function, H ,
between a microphone placed in a duct with flow and an excitation signal are plotted for two mea-
surement frequencies fe=1110 Hz and fe=2000 Hz. The measurement-time for both frequencies is
10 seconds. In these measurements the error can be assumed to be on the output of the transducer
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(a) Scatter plot of 500 relative estimates of the transfer
function for the two measurement cases.
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(b) Auto spectral density function of the transducer (mi-
crophone) signal as function of frequency.

Figure 1. Scatterplot of the relative estimated transfer function between the source and transducer 
(left) and the auto spectral density at the transducer (right) for two stepped sine measurements, fe 
equal to 1110 Hz (red) and 2000 Hz (blue) in an environment where a tonal component is present. 
Measurement time for both cases is 10 seconds.

alone because the excitation signal is affected only by electronic noise which is small compared to
the excitation amplitude. The measurements contain a flow induced tonal noise in the region of 1050
- 1250 Hz as seen in the auto spectral density shown in Fig. 1. Estimates of the transfer function are
calculated using the techniques described in [1]. Each instance of the estimate for both frequencies
are plotted in a scatter plot depicted in Fig. 1. From the figure it can be immediately be seen that the
distribution for both measurements is not circular and that the size of the scatter in the real and imag-
inary part of the transfer functions are not equal. These two observations are in disagreement with
the commonly made assumptions and theoretical result that the error in the real and imaginary part of
the transfer function are uncorrelated and of equal size [1, 3]. The disagreement is a result of the fact
that the estimates are not statistically independent because of the measurement of only one long time
series and not completely stochastic due to the presence of a tonal component in the uncorrelated part
of the signal.

In this study the variances of a transfer function as function of the noise levels are derived which
allows to estimate the variance using a separate measurement of the noise levels. This gives an
estimate of true variance of the measurement when one would measure statistically independent in-
stances. The relation is derived using a framework based on a synchronous demodulation technique
[4].

First the concept of the synchronous demodulation technique is introduced and the thereafter a
mathematical model to determine the expected value and variance of the determined complex pres-
sures is presented. The analysis is performed in the time domain, and the properties of the (co)-
variances of the real and imaginary parts of the determined transfer functions follow naturally from
the analysis. The analysis is performed both in the discrete time domain and the continuous time do-
main such that the effect of discretization can be estimated and the derived expression can be directly
applied to measuring situations.

2. Synchronous demodulation

Synchronous demodulation is a technique to remove the influence of errors uncorrelated with
the excitation signal [4]. The idea is that the reference signal consists of harmonic signal with a
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slowly varying instantaneous amplitude and frequency. By multiplying the measurement signal with a
reference signal that has two components that are orthogonal with each other, e.g. a real and imaginary
part, the result will be the projection of the measurement signal on both components of the reference
signal. This approach gives then the in-phase part and out of phase part of the measurement signal
w.r.t. the reference signal.

To represent a (random) signal in the complex domain such that it has two orthogonal compo-
nents, the signal has to be transformed to an so-called analytic signal X(t) (the bold typeface denotes
complex variables):

(1) X(t) = x(t) + ix̃(t)

where x̃(t) is the Hilbert transform (HT) of x(t). As the analytic signal is complex, it can be repre-
sented in phasor notation:

(2) X(t) = A(t)eiψ(t)

This phasor notation gives the time dependent information of the measured signal, A(t) is the instan-
taneous amplitude (envelope) and ψ(t) is the instantaneous phase of the measured signal. The relation
between the instantaneous phase and the instantaneous frequency is given by [4]

(3) ω(t) =
dψ

dt

To obtain the in-phase and out-of phase parts of the measurements signals w.r.t the reference r signal,
the reference signal is represented in the complex domain by its analytical signal r. The measurement
signal m(t) is then multiplied by the scaled analytical signal to obtain the projection P :

(4) P (t) = m(t) · r(t)

|r(t)|
The measurement signal m(t) can be written as a summation of a response signal s(t) due to the
excitation and contributions from other uncorrelated sources n(t). If the system under study is linear,
the response signal will also be a harmonic which has the same frequency (instantaneous phase) as
that of the excitation signal. The amplitude As(t) and phase φ(t) relative to the excitation signal may
be time dependent and thus the signal can be written as:

(5) s(t) =
1

2
As(t)

(
ei(ψ(t)+φ(t)) + e−i(ψ(t)+φ(t))

)
The projection P (t) of the measurement signal on to the analytic signal of the reference can now be
written as:

(6) P (t) = [s(t) + n(t)] · r(t)

|r(t)|
=

1

2
As(t)e

−iφ(t) +
1

2
As(t)e

i(2ψ(t)+φ(t)) + n(t)eiψ(t)

where n(t) represents the part of the measurement signal that is uncorrelated with the excitation. As
ψ(t) is the instantaneous phase of the reference signal, which equals to ψ(t) = ωrt for a reference
signal with constant frequency (following from Eq. (3)), we can see that the projection of the measure-
ment signal on to the reference signal gives rise to a fast oscillating part, e2iωrt+iφ(t), a slow oscillating
part e−iφ(t) and a part due to the uncorrelated signal n(t)eiψ(t) contribution.

Normally the relation between the input and output is time-invariant and thus by taken the time
average of the projection an estimate of the relation between the input and output is obtained, i.e.

(7) P̃ = Ase
−iφ + Cn

where Cn is the error introduced by the noise term and fast oscillating component. As term P̃ gives
the relation between the input and output it can be seen as a transfer function. The P̃ is related to
the transfer function commonly used in the signal analysis in the frequency domain [1], for which the
absolute value of the input spectrum is normalized to one. In the remainder of the paper the term P̃
will be referred to as the transfer function.

ICSV22, Florence, Italy, 12-16 July 2015 3



The 22nd International Congress of Sound and Vibration

3. Variance

To determine the variance of the transfer function between the excitation signal and the system
response, first the expected value of the transfer function has to be determined. For the analysis, it
is assumed that transfer function between the input and output signal is time-invariant and that the
input signal is a sine of constant frequency ωr and amplitude Ar containing no noise. Under these
circumstances, the analytic signal can be written as r(t) = Ar sin(ωrt) + Ari cos(ωrt) The variance
is calculated both in the discrete time and in the continuous time domain so that the influence of the
sample frequency can be investigated.

First we determine the average of the projection for a limit amount of time, τ = N∆t, where N
is the number of samples taken and ∆t the time between each sample, to obtain an estimate of the
transfer function:

(8) P̃ = lim
N→∞

1

τ

N∑
i=0

P (ti)∆t

Thereafter an ensemble average of these estimates is taken to obtain the expected value of the trans-
fer function E

[
P̃
]

= limM→∞
1
M

∑M
j=0 P̃j . As shown in Eq. (6), the projection can be seen as a

summation of three components, a slowly oscillating component, a fast oscillating component and
a component related to an unwanted signal in the measurement signal and thus the expectation of
the projection can be written as E

[
P̃
]

= E
[
P̃0

]
+ E

[
P̃2f

]
+ E

[
P̃n

]
. The first component is the

expected value of the estimate of the slowly oscillating component which does not depend on the
measurement time, P̃0, the estimate of the component of the fast oscillating component P̃2f and the
contribution of the noise source part P̃n. The constant and fast oscillating component do not have a
random quantity and thus their expected values are given by

(9) E
[
P̃0

]
=

1

2
Ase

−iφ

E
[
P̃2f

]
= lim

N→∞

1

τ

N∑
i=0

1

2
Ase

i(2ωrti+φ)∆t(10)

The noise term is given by,

(11) E
[
P̃n

]
= E

[
lim
N→∞

1

τ

N∑
i=0

n(ti)e
iωrti∆t

]
where n(ti) is the noise model. The noise model used in this paper assumes that the noise can
be represented as a Fourier series with an arbitrary power spectral density Gnn(ωk) and that each
component has a random phase θk

(12) n(ti) =
1

2

∞∑
k=0

√
2Gnn(ωk)∆ω

(
eiωkti+iθk + e−iωkti−iθk

)
To evaluate Eq. (11), the probability density function for θk should be known. We assume that the the
pdf is constant and that the value of θk is bounded by [0, 2π) resulting in an expectation of the noise
term equal to E

[
P̃n

]
= 0. To calculate the variances of the real part and imaginary parts and the

co-variances between the real and imaginary parts, first the deviation from the expected value has to
be calculated. The deviation from the mean value is given by P̃ − E(P̃ ) and can be simplified to P̃n

because the constant and fast oscillating term have no random component, their estimate and expected
value are equal and the expected value of the noise term is equal to zero and thus the variance on the
transfer function estimate is solely determined by the variance of the noise term, E(P̃ )2) = E(P̃n)2).
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3.1 Discrete time domain

The estimate of the noise term in the discrete time domain is given by:

(13) P̃n =
1

τ

∞∑
k=0

N∑
i=0

1

2

√
2Gnn(ωk)∆ω

(
ei(ω

+
k ti+θk) + ei(ω

−
k ti−θk)

)
∆t

were ω+
k = ωr + ωk and ω−k = ωr − ωk. Taken the imaginary and real part of the above estimate,

the variance of the real and imaginary and the covariance between the imaginary and real part can be
calculated. From the above equation it can be seen that each estimate is a completely random quantity
for each k but not for each i. The variance of the real part is calculated by evaluating E(<(P̃n)2) and
the variance in the imaginary part is calculated using E(=(P̃n)2). As each element k is completely
random, the summation over k of the square can be simplified using [

∑
a]2 =

∑
a2 because the cross

terms are uncorrelated and thus their expected value will be equal to zero. Evaluating the summation
and then applying the expectation operator gives rise to the variance for the real and imaginary part
of the estimate:

E

[
<
(
P̃n

)2]
=

∆t2

τ 2

∞∑
k=0

1

2
Gnn(ωk)∆ω ·

N∑
i=0

N∑
j=0[

1

2
cos(ω+

k (ti − tj)) +
1

2
cos(ω−k (ti − tj)) + cos(ωr(ti + tj)) cos(ωk(ti − tj))

]
(14)

E

[
=
(
P̃n

)2]
=

∆t2

τ 2

∞∑
k=0

1

2
Gnn(ωk)∆ω ·

N∑
i=0

N∑
j=0[

1

2
cos(ω+

k (ti − tj)) +
1

2
cos(ω−k (ti − tj))− cos(ωr(ti + tj)) cos(ωk(ti − tj))

]
(15)

The covariances E(<(P̃ )=(P̃ )) and E(=(P̃ )<(P̃ )) are zero because of the orthogonality property
of the sin and cos functions when evaluating the expectation operator.

3.2 Continuous time domain

To obtain the expression for the continuous time-domain, the summation over time ti is computed
by taking the limN→∞ and evaluating the resulting integral.

P̃n =
∞∑
0

1

2

√
2Gnn(ωk)∆ω

1

τ

(
ei(ωr+ωk)τ − 1

i(ωr + ωk)
eiθi +

ei(ωr−ωk)τ − 1

i(ωr − ωk)
e−iθi

)
(16)

The second term in the above equation has an fraction where the denominator could be zero, but the
fraction is bounded for ωr → ωk. In the same manner as in the discrete case, the variance of the real
and imaginary part can be calculated for the continuous case

E

[
<
(
P̃
)2]

=
∞∑
0

1

2
Gnn(ωk)∆ω·(

1− cosω+τ

ω2
+τ

2
+

1− cosω−τ

ω2
−τ

2
− 1− 2 cosω−τ − 2 cosω+τ + 2 cos 2ωrτ)

4ω+ω−τ 2

)(17)
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Figure 2. Calculated H(ωk) for different cases. Plotted points are such that cos(ω−τ) ≈= 0. Excita-
tion frequency at ωr = 300 rad/s

E

[
=
(
P̃
)2]

=
∞∑
0

1

2
Gnn(ωk)∆ω·(

1− cosω+τ

ω2
+τ

2
+

1− cosω−τ

ω2
−τ

2
+

1− 2 cosω−τ − 2 cosω+τ + 2 cos 2ωrτ)

4ω+ω−τ 2

)(18)

with ω+ = ωr + ωk and ω− = ωr − ωk Again for the continuous time case, the covariances between
the real and imaginary part of the projection are equal to zero because of the orthogonality of the sin
and cos functions when evaluating the expectation operator. As the summation is taken over all ω and
thus ω− can be equal to zero. The limits for ω− → 0 for the terms in the integrand exist and thus
Eq. (17) and Eq. (18) are bounded and defined for all ω− except for ω− = 0.

4. Discussion

From both the discrete and continuous representations it can be seen that the variance in the
determined projection is a function of both the noise spectrum itself and the acquisition parameters.
Both the discrete and continuous variance can be represented as

(19) σ2 =
∞∑
0

Gnn(ωk)∆ωH(ωk)

using σ2 = E
[
|P̃n|2

]
= E

[
<
(
P̃n

)2]
+ E

[
=
(
P̃n

)2]
. Herein is H(ωk) the function describing how

much of the noise at ωk is contributing to the variance as function of the acquisition parameters. In
Fig. 2 H(ωk) is depicted for the continuous case for two measurements times (τ = 5 seconds and
10 seconds). One solution of the discrete case is shown for a measurement time of 5 seconds and an
acquisition rate corresponding to three times the excitation frequency.

The value ofH close to the excitation frequency is given by the limit ωk → ωr and equals one. The
curves for the continuous case and discrete case overlap each other close to the excitation frequency
and have deviation for frequencies far away from the excitation frequency. The deviation is small
compared to the value close to H(ωr),in the order of O(10−6) and thus increasing the acquisition
frequencies to very high values will not affect the variance of the end result significantly. This results
is in a way surprising as increasing the sample rate implies that more information is available to obtain
a good estimate (under the assumption that each point is uncorrelated with each other). The only way
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significant way to reduce the variance is by increasing the measurement time, which results in a more
narrow peak in H at ωr. Using the continuous time model, the variance as function of the integration
time τ can be calculated and the variance of each estimate scales with Var(X̃) ∝ τ−1. The variance of
the mean of the estimates var(X) can be related to the variance of each estimate when each estimate
is statistically independent from each other showing that var(X) ∝ 1

Mτ
and thus the variance of the

determined transfer function is inversely proportional to the total measurement time T = Mτ and the
signal to noise ratio is therefore proportional to

√
T .

In agreement with earlier results the imaginary part and real part are uncorrelated with each other.
It is often assumed that the variance is circularly distributed [3, 2] in the complex domain, implying
that the variance on the real and imaginary part are equal. From both the discrete and continuous
results, Eqs. (14) - (18) it can be seen that this is not completely true. However, the last term that
has a different sign is generally much smaller than the other two terms, and thus the error can be
approximated to have a circular distribution.

5. Conclusion and Outlook

The paper investigates a way to determine the variance of a transfer function estimate under condi-
tions where it is difficult to obtain a large number of statistically independent estimates. The variance
of the transfer function estimate as function of the noise spectrum has been derived in the discrete and
continuous time domain for a finite measuring time. It is shown that only the measurement time and
the sampling frequency affect the variance and that the sampling frequency is of minor importance.
The next step is to experimentally validate the derived relations.
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