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The paper presents a numerical methodology for the prediction of the thermoacoustic instabilities
with the effects of the mean-flow as well as the viscosity. As an academic standard test case,
the configuration within the flame sheet located in the middle of the duct is investigated. First,
the ducted flame numerical reference case is solved by the inhomogeneous Helmholtz equations
in combination of the n − τ flame model assuming that the flow is at rest. Then, we derive
the linearized Navier-Stokes equations (LNSE) in frequency domain in combination of the flame
model. The unsteady effect of the flame is modeled by the n− τ flame model in harmonic form,
which is essentially a 1D formulation relating the rate of heat release and the acoustic velocity at
the reference point.

1. Introduction

Combustion instabilities usually refer to the sustained high-amplitude pressure oscillations which
can lead to the structural damage of the combustors in aero-engines. These self-excited oscillations
are due to the coupling between the fluctuation of the heat release rate and the pressure perturbations.
More specifically, there is a feedback process in the combustors which can relates the downstream
flow to the upstream region where the perturbations are generated. Usually the acoustic propagation
is responsible for the feedback process, while the coupling may also involve convective modes such
as entropy mode and vorticity mode. For instance, when the entropy wave is propagating upon a
nozzle end of a pipe, it will generate the acoustic wave[1] which may result in the change of the
flame front position or the instantaneous heat release rate. Vorticity wave plays an significant role
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in the acoustic boundary layer which could lead to the flashback of the flame[2], also some energy
will be transferred from the acoustic mode to the vorticity mode. It is important for us to understand
the processes of interaction between combustion and waves or flow perturbations which may become
driving or coupling processes under the unstable conditions.

The advantage of using linearized Navier-Stokes equation(LNSE) to predict the thermoacousic
instabilities is that not only the acoustic mode can be taken into account, as well as the entropy mode
and the vorticity mode. Compared with the exciting numerical methods, LES, DNS or low order
methods, LNSE is much less computational demanding and can be applied to extensive numerical
geometries[3], even three-dimensional ones. Some numerical work has been carried out by solving
linearized euqations, e.g. F. Nicoud has investigated the influence of the mean flow on the thermoa-
coustic instabilities by solving linearied Euler equations(LEE)[4]. D. Iurashev has predicted the limit
cycle of the instabilities by solving the LNSE in the time domain[5]. J. Gikadi has predicted the
acoustic modes in combustors by solving the LNSE in the frequency domain[6]. Compared with his
work, this paper reformulates a different form of energy equation and the entropy perturbations could
be obtained directly rather than solving the pressure perturbations.

For the prediction of the thermoacoustic instabilities, the wave propagation over a baseline flow
would give rise an eigenvalue problem[4]. The complex eigenvalues are related to the frequencies of
the thermoacoustic modes and the growth rate. The mathematical formulations present in this paper
need to be solved as an eigenvalue problem with the discretazation of Finite Element Method.

2. Reference case without the mean-flow effect

The numerical comparison with and without the flow effect is provided in this section to show the
influence of the flow to thermoacoustic instabilities. As a reference case for the proposed numerical
methodology, inhomogeneous Helmholtz equation in combination of the flame n-τ model is solved
when flow is at rest.

2.1 Inhomogeneous Helmholtz Equation in combination of the flame model

An appropriate mathematical description for the reference case can be derived when the assump-
tions of the low Mach number and constant mean pressure have been made. Besides, viscosity as well
as thermodiffusivity are also neglected [7]. Under these assumptions, the wave equation incorporating
a heat release source term in the time domain can be derived:

(1) ∇ · (c̄2∇p′)− ∂2p′

∂t2
= −(γ − 1)

∂q̇′

∂t

where primed and overbarred variables stand for the thermo-acoustic perturbation and mean variables
respectively, q̇′ stands for the heat release rate per volume per unit time.

It is natural to introduce the harmonic variation φ′ = R{φ̂(x)exp(−iωt)} into the Eq. (1) in order
to predict the eigenfrequency of the thermo-acoustic instabilities:

(2) ∇ · (c̄2∇p̂) + ω2p̂ = iω(γ − 1)q̂

Heat release fluctuation q̂ is required to close the Eq. (2), in this case, the n − τ flame model is
using as described in the Section 3.3, then one obtains:

(3) ∇ · (c̄2∇p̂) + ω2p̂ =
(γ − 1)q̄(x)

ρ̄(xref )ū(xref ) · nref
nl(x)e−iωτ(x)∇p̂ · nref (xref )

The present inhomogeneous Helmholtz equation in combination of the flame model as Eq. (3) is
discretized with the Finite Element Method and solved by an iterative eigenvalue solver, see [7] for
details.
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2.2 Numerical case: 1d combustion

The configuration of the reference case is 1D and consists of a duct of length L = 0.5m and
a constant cross section where the fresh gas are separated from the hot gas by an flame with the
thickness δ = 0.001m located at the middle of the duct as Fig. 1. Modelling the unsteady effects of
the flame thanks to the classical n − τ flame model and assuming that the fresh-to-hot temperature
ration is T2/T1 = 4. In this case, the acoustic velocity is zero at the inlet (û · n = 0) and the pressure
is fixed at the outlet (p̂ = 0) as the boundary conditions [8].

Figure 1: The configuration of the reference case

When the Eq. (3) is considered first without a source term, which corresponds to the case of a
passive flame with zero unsteady heat release. Then, the mean heat release is considered not zero any
more, which is referred to an active flame case, consistently, the mean temperature and speed of sound
are the functions of space. The results of both the passive flame and the active flame are presenting
in Fig. 2. The influence of the mean flow to the thermoacoustic instabilities for a passive flame is
showing in Fig. 3.

Figure 2: comparison between numerical results
and theoretical results

Figure 3: Mean-flow effect on the thermoacoustic
instabilities

As shown in the Fig. 2. the eigenfrequencies of the passive flame only have the real part, the
modes are neither amplified or damped. For the eigenfrequencies of the active flame, the numerical
results have been compared with the theoretical ones, which demonstrate that the fist and the fourth
modes are stable, and the third mode is unstable corresponding to the negative growth rate and the
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positive growth rate. The Fig. 3. shows that, for the first three modes of a passive flame, the imaginary
parts of eigenfrequencies are more negative with the increasing Mach number, which is meaning that
the combustion is more stable when the Mach number of the flow is larger with the specific boundary
conditions. Fig. 3. further shows that mean-flow effects are significant even for small Mach number
values, this is one of the motivations for the work of the proposed numerical methodology.

3. Mathematical model

In this section, mathematical formulations of LNSE in frequency domain are presented includ-
ing the basic equations, the linearizations, the harmonic equations and the eigenvalue matrix to be
solved. The flame n− τ model for modelling the heat release fluctuations to close the problem is also
described.

3.1 Basic Navier-Stokes equations with assumptions

The basic governing equations are the Navier-Stokes equations, which include the continuity
equation, the momentum equations, and the energy equation. One should consider the following
assumptions: an homogeneous reacting mixture with constant heat capacities Cp and Cv; the mixture
is the perfect gas; body forces are neglected and the flow is adiabatic.

The continuity and the momentum equations present respectively as below:

(4)
Dρ

Dt
= −ρ∂ui

∂xi
(5) ρ

Dui
Dt

= − ∂p

∂xi
+
∂τij
∂xj

With the assumptions that neglecting the body forces and the heat conduction, the energy equation
in terms of total energy is presented as Eq. (6) [9].

(6) ρ
D

Dt

(
e+

uiui
2

)
= ρq̇ − ∂(pui)

∂xi
+
∂(uiτij)

∂xj

However the energy equation could be reformulated in several different forms depending on which
variables are primarily concerned to be solved. For example, when a flame is present, the entropy
field couples with the acoustic perturbations to generate hot spots. In this case, entropy waves can
play an significant role in combustion instabilities[10]. It is also very important to develop a numerical
methodology consistent with the physical phenomenon in coumbustors. For the reasons above, energy
equation in terms of entropy is given as Eq.(7):

(7)
Ds

Dt
=
R

p
(q̇ + τij

∂ui
∂xj

)

In some other cases for the convenience of the comparison with the experimental results, the energy
equation could also be formulated in terms of the pressure as Eq. (8):

(8)
∂p

∂t
+ ui

∂p

∂xi
+ γp

∂ui
∂xi

= (γ − 1)

(
q̇ + τij

∂ui
∂xj

)
Here for the Eqs. (4) to (8), where ρ, ui, p and s stand for the mixture density, i component of
the velocity in the Cartesian coordinates, static pressure and entropy per mass unit respectively. In
addition, µ is the dynamic viscosity, q̇ is the rate of heat release per unit of volume, R is the constant
specific gas constant, R = 287J/(kg ·K), γ is the heat capacity ratio, τij is the viscous stress, which
is defined as:

(9) τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
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where δij is the Kronecker delta function.
For the ideal gas mixture, the state equation and the entropy expression is given as below:

(10) p = ρRT

(11) s− sref = Cvln

(
p

pref

)
− Cpln

(
ρ

ρref

)
where, Cv is the specific heats at constant volume, Cp is the specific heats at constant pressure and
the ‘ref’ index stands for standard values.

3.2 Linearization of the Navier-Stokes equations

Assuming each variable can be written as a composition of a mean flow and a small perturbation,
such as: ρ = ρ̄ + ρ′, ui = ūi + u′i, p = p̄ + p′, s = s̄ + s′, τij = τ̄ij + τ ′ij , q̇ = ¯̇q + q̇′. Introducing
the preceding expansions into the Eqs. (4)-(7) and keeping only terms of first order, the linearized
equations for the perturbations take into account the heat release rate are obtained within the tensor
form:

(12)
∂ρ′

∂t
+

∂

∂xi
(ρ̄u′i + ρ′ūi) = 0

(13)
∂(ρ̄u′i)

∂t
+

∂

∂xj
(ρ̄ūju

′
i) +

∂ūi
∂xj

(
ρ̄u′j + ρ′ūj

)
= − ∂p

′

∂xi
+ µ

(
∂2u′i

∂xk∂xk
+

1

3

∂2u′k
∂xi∂xk

)

(14)
∂s′

∂t
+ ūi

∂s′

∂xi
+ u′i

∂s̄

∂xi
=
Rq̇′

p̄
− R ¯̇qp′

p̄2
+
R

p̄2

(
p̄

(
τ̄ij
∂u′i
∂xj

+ τ ′ij
∂ūi
∂xj

)
− p′

(
τ̄ij
∂ūi
∂xj

))
Which describe the spatial-temporal evolution of the fluctuating quantities ρ′, u′i and s′. The Eqs.
(12)-(14) are the linearized Navier-Stokes equations (LNSE). In the Eq. (14), entropy fluctuations
are chosen as the primitive variable to be solved for the linearized energy equations. Similarly, the
linearized energy equations also could be formulated in terms of the pressure fluctuations, see the e.g.
[6].

For the state equation of Eq. (10), it can be linearized for small perturbations of pressure, density
and temperature. The Taylor series developed around the mean state and only terms of the first order
are kept, the linearized state equation is obtained as [11]:

(15)
p′

p̄
=
ρ′

ρ̄
+
T ′

T̄

The technique for linearization of using Taylor series could also be applied to the entropy ex-
pression of Eq. (11). The partial derivatives of pressure with respect to density and entropy read
respectively as:

(16)
∂p

∂ρ

∣∣
(ρ̄,s̄)

= γ
p̄

ρ̄
(17)

∂p

∂s

∣∣
(ρ̄,s̄)

=
p̄

Cv

Through the linearization of the entropy expression, a relation between pressure, entropy and
density fluctuations can be established:

(18)
p′

p̄
= γ

ρ′

ρ̄
+

s′

Cv
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3.3 Flame n-τ model

The most challenging part for the prediction of thermo-acoustic instabilities is modelling the un-
steady behaviour of the flame. In general, the modelling of flame is usually by the means of describing
the relation between unsteady heat release rate and velocity or equivalence ratio fluctuations. Based
on this, several models have been proposed, such as describing the response of conical or V-shaped
laminar flame [12], and the effect of equivalence ratio fluctuations [13]. In this paper, the most gen-
eral, a so-called n-τ flame model[14] is described. The n-τ model is essentially a one dimensional
model which links the global heat release at time t to a time lagged acoustic velocity at a reference
position. The Eq. (19) represents a compact flame model:

(19) Q̇′(t) = n
¯̇Q

ūb
u′i(xref , t− τ)nref

where Q̇′(t) is the global heat release rate, ¯̇Q is its mean counterpart and ūb is the bulk velocity at the
reference location. Generally, the factor n governs the strength of the flame response and is called
the interaction index, τ describes the time lag and controls the phase between acoustic pressure and
unsteady heat release rate of the flame and thus the sign of the Rayleigh integral.

However, the compactness assumption is not always fulfilled in the modern gas turbines where
the heat release is spatially distributed. In such cases, the compact n-τ model of Eq. (19) can be
reformulated to relate the local heat release fluctuations to a velocity fluctuation at a reference point:

(20) q̇′(x, t) = nl(x)
¯̇q

ūb
u′(xref , t− τ(x))nref

where q̇′ is the local unsteady heat release rate per unit volume, ¯̇q is the local mean heat release rate
per unit volume and nl(x) is the local interaction index spatially distributed in the flame zone. Once
the Eq. (20) is converted into the frequency space, the model leads to:

(21) q̂(x) = nl(x)
q̄

ūb
e−iωτ(x)û(xref )nref

where the acoustic velocity can be replaced by the pressure gradient iωρ̄û = ∇p̂ if he zero Mach
number assumption is made.

3.4 Linearized Navier-Stokes equations in frequency domain

Writing any fluctuating quantity g′(x, t) as g1 = ĝ(x)e−jωt, one obtains the linearized Navier-
Stokes equations associated with the heat release fluctuations in the frequency domain within the
vector notation as below:

(22) ū · ∇ρ̂+ û · ∇ρ̄+ ρ̄∇ · û + ρ̂∇ · ū = jωρ̂

(23) ū · ∇û + û · ∇ū +
ū · ∇ū
ρ̄

ρ̂+
1

ρ̄
∇p̂− µ

ρ̄

(
∇2û +

1

3
∇(∇ · û)

)
= jωû

(24) ū · ∇ŝ+ û · ∇s̄+
Rq̄

p̄2
p̂− R

p̄
q̂ − µ

[
2

p
∇ū · ∇û− (∇ū)2

p̄2
p̂+

1

p̄
∇ū · ∇T û+

1

p̄
∇T ū · ∇û− 1

p̄2
∇T ū · ∇ūp̂− 2

3

(
2

p̄
(∇ · ū)(∇ · û)− (∇ · ū)2

p̄2
p̂

)]
= jωŝ

The state equation and the entropy expression in frequency domain:
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(25)
p̂

p̄
=
ρ̂

ρ̄
+
T̂

T̄
(26)

p̂

p̄
= γ

ρ̂

ρ̄
+

ŝ

Cv

3.5 Eigenmatrix of linearized Navier-Stokes equations

Using Eqs. (25) (26) to eliminate p̂ in Eqs. (22), (23) and (24), one obtains LNSE with the
unknowns ρ̂, û, ŝ. Continuity equation, momentum equation and energy equation are presenting
below respectively:

(27) (ū · ∇+∇ · ū)ρ̂+ (∇ρ̄+ ρ̄∇) · û = jωρ̂

(28)(
∇c̄2

ρ̄
+

ū · ∇ū
ρ̄

+
c̄2

ρ̄
∇
)
ρ̂+

(
ū · ∇+ (∇ū·)− µ

ρ̄
∇2 − µ

3ρ̄
∇(∇·)

)
û+(γ−1)T̄

(
∇p̄
p̄

+∇
)
ŝ = jωû

(29)
(
Rγq̄

p̄ρ̄
+ µ

[
(∇ū)2 +∇T ū · ∇ū− 2

3
(∇ · ū)2

])
ρ̂+(

(∇s̄·)− µR

p̄

[
2∇ū · ∇+∇ū · ∇T +∇T ū · ∇ − 4

3
(∇ · ū)(∇·)

])
û

+

(
ū · ∇+ (r − 1)

q̄

p̄
+ µ

[
(∇ū)2 +∇T ū · ∇ū− 2

3
(∇ · ū)2

])
ŝ− R

p̄
q̂ = jωŝ

Assuming that the unsteady heat release amplitude q̂ is modeled as a linear operator ρ̂, û and ŝ,
formally written as q̂ = qρ̂ρ̂+ qûû + qŝŝ to define the following eigenvalue problem:

(30) Aν = jων

with

(31) A =

 ∇ · ū + ū · ∇ ∇ρ̄ ·+ρ̄∇· 0
∇c̄2
ρ̄

+ ū·∇ū
ρ̄

+ c̄2

ρ̄
∇ ∇ū ·+ū · ∇ − µ

ρ̄
∇2 − µ

3ρ̄
∇(∇·) (γ − 1)T̄

(
∇p̄
p̄

+∇
)

c31 c32 c33


c31 = Rγq̄

ρ̄p̄
+ µ

[
(∇ū)2 +∇T ū · ∇ū− 2

3
(∇ · ū)2

]
− R

p̄
qρ̂

c32 = ∇s̄ · −µR
p̄

[
2∇ū · ∇+∇ū · ∇T +∇T ū · ∇ − 4

3
(∇ · ū)(∇·)

]
− R

p̄
qû·

c33 = ū · ∇+ (γ − 1) q̄
p̄

+ µ
[
(∇ū)2 +∇T ū · ∇ū− 2

3
(∇ · ū)2

]
− R

p̄
qŝ

The matrix (31) is the coefficient of the eigenmatrix for the proposed numerical methodology,
(ω, ν) is the eigenpair, and ν = (ρ̂, û, ŝ)T is the eigenvector.

4. Summary and Outlook

In the paper, the comparison of numerical results with and without mean-flow effects is provided
by solving the inhomogeneous Helmholtz equation, which has been proved that the mean-flow effect
has an significant effect on the thermoacoustic instabilities. Then, the paper presents a numerical
methodology to predict the thermoacoustic instability with the mean-flow effects as well as the vis-
cosity by solving the linearised Navier-Stokes equations in frequency domain. The unsteady flame
behaviour is described by the flame n − τ model for modelling the heat release fluctuation. Further
numerical work will be proceed with the proposed numerical methodology.
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