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With this study, we provide a global link between linear and non-linear acoustic resistance of a
perforation as a function of orifice geometry and Strouhal number. High amplitudes of acoustic
pressure induce flow separation at the edges of the orifices. This is a non-linear mechanism
increasing the acoustic resistance of a perforation. Quasi-static models have been used to predict
the acoustic resistance in the non-linear regime, yet the linear to non-linear transition has been
out of focus so far. We carry out open-end impedance measurements in a semi-anechoic room
with four different samples. These samples are selected to have different orifice geometries and
edge profiles, so that the conclusions would be general. The most prominent result of this study is
that the change in the non-linear resistance can be expressed as a function of the Strouhal number
only, if the resistance is corrected for the vena-contracta factor which can be deduced from steady
flow measurements.

1. Introduction

Perforated plates have various application areas in sound absorption, such as duct and architectural
acoustics. Their sound absorption mechanism is often modeled by considering the resistance of a
single perforation on the plate. When Sivian [1] reported that strong incident sound waves change
this property, he introduced the non-linearity concept into acoustic response of perforations.

The pioneer work on non-linear acoustic response of a perforation has been carried out by Ingard
and Ising [2]. They measured the pressure and the particle velocity amplitude upstream and inside an
orifice, respectively. They reached SPL = 157 dB ensuring that non-linear effects are dominant in
their study. Yet, Ingard and Ising do not consider the vena-contracta factor of the orifice when they
propose a quasi-static model for the non-linear resistance. Nevertheless, using a sharp-edged orifice
in the measurements compensated this problem, leaving their result valid for circular perforations
with sharp edge profile.

Later, Disselhorst and van Wijngaarden [3] carried out measurements of the radiation impedance
of an open-pipe termination for rounded and square / sharp edge profiles. They found that vortex
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shedding is the main mechanism for the non-linear acoustic response. They also provide an analytic
model for vortex generation and shedding based on these experiments.

Cummings [4, 5], Hofmans et al. [6] and Jing and Sun [7] have improved the quasi-steady model
for orifices of Ingard and Ising’s [2] by introducing the vena-contracta factor. They also provide some
theoretical and empirical values for the vena-contracta factor for circular orifices with square-edged
and slit orifices with sharp-edged profiles.

Recently, Tonon et al. [8] have studied the perforations with chamfers. They investigated the
quasi-steady acoustic response of the orifices. It should be noted that a more detailed study of the
vortex shedding is provided by Leung et al. [9].

Although all of these studies provide very valuable information about the acoustic properties of a
perforation in the non-linear regime, none of them focus on the linear to non-linear transition regime.
This paper aims to provide a link between linear and non-linear acoustic resistance of a perforation by
means of open-end transfer impedance measurements and the quasi-steady acoustic resistance model.
To obtain general results, we use samples with four different orifice geometries and edge profiles.

2. Quasi-steady model for non-linear resistance

The acoustic non-linearity of an orifice (or perforation) subject to high amplitude harmonic os-
cillation is determined by the non-dimensional Strouhal number Sr = 2πfdp/|up′| where f is the
frequency, dp is the diameter of the perforation and |up′| is the surface averaged acoustic velocity
amplitude in the perforation [10]. For Sr >> 1 the acoustic response of an orifice is linear. If the
acoustic particle displacement is comparable with the diameter of the perforation, i.e. Sr ∼ O(1),
the flow starts to separate and vortices form at the edges of the orifice. The perforation geometry and
the parameters are sketched in Fig. 1.

D

upstream downstream

tp

Figure 1: Typical orifice geometry. D is the diameter of the impedance tube, dp is the perforation
diameter, dj is the diameter of the oscillating jet flow due to the vena-contracta effect, uj ′ is the
acoustic velocity in the jet area, tp is the plate thickness.

Ingard and Ising [2] report for an orifice placed at the open end of a pipe that, when |up′| exceeds
some transition value, the upstream acoustic pressure amplitude |pu′| is proportional to the square of
this velocity and the average density of the acoustic medium, ρ0:

(1) |pu′| = ρ0|up′|2.

According to Ingard and Ising’s experiments, this transition velocity amplitude is around 10 m/s.
Considering their set-up and sample specifications (dp = 7 mm, f = 150 Hz) this transition velocity
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amplitude corresponds to Sr = 0.66. For the perforation velocity amplitudes larger than this transi-
tion value, the acoustic resistance becomes almost equal to the transfer impedance amplitude of the
perforation, <{Zt} ≈ |Zt|. In this region, the quasi-steady approach is valid.

Although Ingard and Ising [2] did not consider the jet forming in low Sr number region, this does
not invalidate their findings for their specific test case, but limits their result to sharp-edged orifices.
Considering the flow sketched in Fig. 1, the pressure difference ∆p′ across the perforation [6] is:

(2) ∆p′ =
1

2
ρ0(u

′
j)

2.

The amplitude of the jet velocity is related to the acoustic velocity amplitude in the perforation,
|up′|, as follows:

(3) uj
′ =
|up′|
Cvc

,

where Cvc is the vena-contracta factor. One finds Cvc = 0.61 for the orifices with sharp or square-
edged profiles and 0.95 < Cvc < 1.0 for rounded or chamfered edges [7, 8].

Combining Eqs. (2) and (3), we can generalize Eq. (1) for different edge profiles.

(4) |∆p′| = 1

2C2
vc

ρ0|u′p|2.

Our study in the linear to non-linear transition regime is based on this approach and proposes a
correction factor connecting these regimes.

3. Experimental set-up

The experimental investigation of the mentioned quasi-steady model is performed on an impedance
tube workbench. The impedance tube and the measurement method are sketched in Figure 2.

(a) Impedance tube. (b) Open-end transfer impedance measurement
method.

Figure 2: Description of the experimental set-up (a) and the measurement procedure (b). The differ-
ence between sample loaded termination impedance, ZS , and open termination impedance, ZR, gives
the transfer impedance of the plate, Zt = ZS − ZR.

The tube shown in Fig. 2a is 1-m long and the inner diameter is D = 50 mm. Along the tube,
there are 6 BSWA MPA416 microphones that are placed equidistantly. The distance between two
neighbouring microphones is 175 mm and their sensitivity is about 50 mV/Pa.
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We perform signal processing and data acquisition with the combination of an NI PCIe-6361
X-Series DAQ card and LabView R©. The sampling frequency for the generated excitation signal is
20 kHz where the recording sampling frequency is 10 kHz. For each frequency step, we record the
data for 10 seconds and trim the first and last 2 seconds to exclude transient effects. The recorded
pressure data is transformed into the Frequency domain with a Lock-in method. A separate Matlab R©

script has been built for this post-processing.
We calibrate the microphone that is closest to the sample with a B&K pistonphone at 1000 Hz.

The rest of the microphones are calibrated relatively to this reference microphone. To do that, we
place all the microphones near to a closed end wall at the same distance with respect to the speaker
and for each frequency step in the region 100 Hz < f < 700 Hz, a calibration coefficient is measured
relative to a reference microphone.

For non-linearity considerations, the amplitude of the acoustic pressure in the tube is measured at
the reference microphone and wave decomposition is performed as explained in [11].

To avoid a temperature gradient inside the tube, after each 20 frequency-steps, we wait 15 minutes
for the temperature to be uniform again.

With all of the precautions and methods employed, in the frequency range of 100 Hz < f <
700 Hz, the deviation from the theoretical value is less than 0.5% for closed-end reflection coeffi-
cient measurements. Yet, we perform open-end measurements to calculate the transfer impedance
of an MPP sample. The idea behind the open-end transfer impedance measurement is illustrated in
Figure 2b.

We perform open-end measurements in a semi-anechoic room to minimize the effect of ambiance.
Since both the open-end and sample loaded open-end measurements are carried out in the same
medium, we expect the resistance part of the radiation impedance to be the same for both of the cases.
Moreover, as the porosity of the samples are in the order of 1%, the transfer impedance of the samples
are expected to be much larger than the radiation impedance.

The geometry and the specifications of the samples used in the experiments are given in Fig. 3.

Figure 3: Sketch of the samples with their geometric specifications. Samples C1, C2 and C3 have
circular geometries where Sample S1 has a slit geometry. The porosity is the same for all circular
samples, i.e. σC1 = σC2 = σC3 = 0.007; where for the slit sample it is σS1 = 0.008.

Samples C1, C2 and C3 differ from each other by their edge profiles. C1 has the square-edged
geometry, where C2 and C3 has a chamfer-edged profile. The difference between C2 and C3 is their
chamfer size as shown in Fig. 3. Lastly, Sample S1 has the slit shaped orifice with a taper from one
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end to another. The length of the slit is Lp = 48 mm. To be able to compare Sample S1 with the
other samples, we define the hydrodynamic diameter of the slit area as dh = 2

√
(wpLp)/π. One

should consider replacing dp with dh when calculating the non-dimensional parameters, such as Sr,
for Sample S1 in this study.

4. Results and discussions

The flow separation initiates when Sr is of the order of unity. This is called the transition regime.
If the perforation thickness is long enough, the flow reattaches to the wall [12]. To avoid this phe-
nomenon, thin plates, i.e. dp/tp > 0.5, are used in the experiments as can be seen in Fig. 3.

Even though the non-linear effects dominate the resistance of a perforation in the region Sr << 1,
linear and non-linear contributions to the resistance are comparable in the transition region. To focus
only on the non-linear effects, we subtract the linear contribution of the resistance, <{Zt}L from
the resistance measured in the transition regime, <{Zt}NL. <{Zt}L is the measured value obtained
at Sr ∼ O(102). Moreover, to be able to compare this quantity with the non-linear resistance, we
divide this difference by Ingard and Ising’s quasi-steady model [2] given by Eq. (1). Finally, since
we measure the impedance in the tube, we multiply this term with the porosity, σ, to obtain the
dimensionless non-linear resistance of the perforation as follows:

(5) ∆RNL =
(<{Zt}NL −<{Zt}L)σ

ρ0|up′|
.

After defining the non-linear resistance difference in Eq. (5), we investigate the effect of the Shear
number, Sh, which is a dimensionless parameter for comparing the Stokes boundary layer thickness
and the perforation diameter. It is defined by Peters et al. [10] as Sh = dp

√
(ωρ0)/(4µ), where

ω = 2πf is the radial frequency and µ is the dynamic viscosity of air. The effect of Sh is examined
only for Sample C1. ∆RNL values are plotted as a function of 1/Sr in Fig. 4 for various Sh values
corresponding to 120, 140, 160, 180 and 220 Hz.
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Figure 4: The Shear number effect on non-linear resistance difference for Sh > 10. Sh does not have
a strong effect on ∆RNL.

Two main observations can be drawn from Fig. 4. Firstly, for a certain geometry ∆RNL is not
strongly affected by the change in Sh. Considering that the Stokes boundary layers are responsible
of the linear resistance in the perforations [13], this result confirms that the parameter we define in
Eq. (5) represents only the non-linear behaviour. Secondly, we see that ∆RNL ∼ O(0.1). This is due
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to the fact that our measurements are in the transition regime. In the non-linear regime, <{Zt}NL −
<{Zt}L ≈ <{Zt}NL would hold and, ∆RNL ∼ O(1).

Furthermore, we study the perforation geometry and edge profile effects on the non-linear resis-
tance change. In Fig. 5a we compare all the samples for different Sr numbers at 120 Hz.
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(a) Effect of perforation geometry and edge pro-
file. The samples with the chamfer-edged pro-
file (C2 and C3) experience less non-linear effects
than square-edged profile (C1). On the other hand,
the non-linear resistance difference of the sample
with slit geometry, S1, is comparable to C1.
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(b) Non-linear resistance difference for different
geometries corrected for the vena-contracta. Re-
gardless of the geometry, all samples display a
very similar non-linear behaviour. This behaviour
is modeled as Fc(Sr) = 1/(2Sr + 1) and plotted
as a solid line.

Figure 5: Comparison of the non-linear resistance difference of various geometries at 120 Hz.

From Fig 5a, it is seen that the edge profile and the perforation geometry are important for the
non-linear resistance difference. But these effects can be compensated by adopting Cummings’ quasi-
steady approach for the effect of the vena-contracta factor [4]. The key point in this procedure is to
define the vena-contracta factor, Cvc, correctly. Emprical data is provided by Cummings[4] and Jing
and Sun [7]. In principle, Cvc can also be measured from steady flow experiments [14]. By Eq. (4),
the corrected non-dimensional resistance difference ∆RNL−C is calculated by

(6) ∆RNL−C = ∆RNL 2C2
vc,

and plotted in Fig. 5b. The Cvc values chosen for these samples are given in Table 1.

Table 1: Corresponding vena-contracta factors for the samples used in the measurements.

Sample C1 C2 C3 S1
Cvc 0.611 0.95 1.00 0.61

Once the geometry effect is compensated for the vena-contracta factor, we observe that ∆RNL−C
depends mainly on Sr in Fig. 5b. In other words, this quantity can be related to the linear (Sr >> 1)
and non-linear (Sr << 1) regimes by means of a correction function, Fc(Sr). The upper and lower
limits for Fc(Sr) must satisfy

lim
Sr→∞

Fc(Sr) = 0,(7a)

lim
Sr→0

Fc(Sr) = 1,(7b)

1Cummings [4] suggests Cvc = 0.75 for square-edged circular perforations. On the other hand, Jing and Sun [7]
report that Cvc = 0.61 fits their measurements better.
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so that the non-linear resistance diminishes in linear regime and becomes dominant in the non-linear
regime.

The function Fc(Sr) = 1/(2Sr + 1) satisfies the conditions given in Eq. (7) and represent the
distribution of the measured points in Fig. 5b fairly well. Using this function, the non-linear resistance
difference is calculated as a function of geometry and Sr as

(8) ∆RNL =
1

(2C2
vc)(2Sr + 1)

.

5. Conclusions

This study focused on the linear to non-linear transition regime in perforations, i.e. 1 ≤ Sr ≤ 10.
In this regime, we investigate the effects of the Strouhal number, Sr, and the orifice geometry on
the acoustic non-linearity of the perforations. We have carried out open-end transfer impedance
measurements to obtain the acoustic resistance of the perforations.

In the region of Sh ≥ 10, our measurements show that the dimensionless non-linear resistance
difference of the perforation does not depend strongly on the Sh number. Yet, the question “Does the
Sh number have an effect on the resistance in the typical Sh range for micro-perforated plates, i.e.
1 < Sh < 10 ?” needs further investigations.

Furthermore, we observe that the perforation geometry and the edge profile is important in terms
of non-linear resistance. The difference caused by the geometry can be predicted using the quasi-
steady theory in combination with the vena-contracta factor. This way, geometrically corrected non-
linear resistance difference becomes a function of Sr only.

Our main result is a simple but global correlation for the transition regime that relates linear
resistance to non-linear resistance as a function of orifice geometry and Sr.
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