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This study investigates the effect of edge profile of a Helmholtz resonator neck in non-linear
regime by means of experiments and large eddy simulations. The dissipation mechanisms in a
Helmholtz resonator differ significantly, depending on the sound pressure level. At low levels,
i. e., in the linear regime, thermo-viscous effects are responsible for the dissipation of the acous-
tic energy since the oscillating flow follows the neck geometry. However, increasing the sound
pressure level results in flow separation at the edges. At these points, vortices form which con-
vert acoustic perturbation energy to the hydrodynamic mode. This is a strong non-linear effect
increasing the dissipation considerably. To observe this effect, experiments and numerical simu-
lations are carried out for combinations of various backing volumes, sound pressure levels, and
neck profiles. The neck profiles are selected as 45◦–chamfers due to manufacturing concerns.
Hereby, a strong dependence on the edge shape is observed in both experiments and numerical
simulations. The presence of the chamfer reduces the vortex shedding in comparison to the sharp
edge significantly, which leads to a lower acoustic resistance.

1. Introduction

Helmholtz resonators are passive sound absorbers having a wide range of application areas from
ancient Greek theaters [1] to aerospace industry [2]. These resonators are named after the first scientist
to analyze them theoretically: Hermann von Helmholtz [3].

A Helmholtz resonator is a combination of an air backing volume and an opening, which is referred
to as the neck of the resonator. When excited by a pressure perturbation, the air volume acts as a
spring due to its compressibility and causes oscillation of the air in the neck. This spring-mass model
is introduced by Rayleigh [4] simplifying Helmholtz’s pioneer work. Later, Ingard and Labate [5]
observed that there are two main dissipation mechanisms in the Helmholtz resonators. The first is due
to thermo-viscous boundary layers, which is linear; and the other one is due to vortex shedding, which
is non-linear. This non-linear dissipation effect is addressed by Ingard and Ising [6]. They considered
the neck separately, performed pressure as well as particle velocity measurements, and observed that
this non-linear mechanism causes a decrease in the reactance of the oscillating air within the neck.
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(a) Helmholtz resonator. (b) Close-up resonator neck.

Figure 1. Sketch of the Helmholtz resonator geometry.

In 1979, Hersh et al. [1] derived non-linear differential equations to model the non-linear response
of the Helmholtz resonators. Yet none of the studies mentioned so far focuses on the effect of the
edge profile of the neck on the non-linearity of the resonator. In similar configurations, a huge impact
of the edge geometry was observed, see, e. g., the study for a resonance tube by Disselhorst and van
Wijngaarden [7].

In this study, three different neck samples are used. One of these samples has the sharp and other
two have the 45◦-chamfered edge profile in combination with different chamfer lengths. The purpose
of the study is to understand the effect of edge profile of the neck on the non-linear response of the
Helmholtz resonator. To achieve this purpose, large eddy simulations (LES) and impedance tube
measurements are carried out. The geometry of the Helmholtz resonator domain is sketched in Fig. 1.

2. Modeling of Helmholtz Resonators

The dynamic behavior of the Helmholtz resonator is commonly described in frequency domain
with its surface impedance Zs. The impedance is defined as the ratio of the Fourier transforms of the
fluctuating pressure p̂

′ to the fluctuating velocity û
′ , i. e., Zs(ω) = p̂

′
(ω)/û

′
(ω). Thus, the impedance

Zs can be seen as transfer function from u
′ to p

′ . The real part of the impedance is referred to as
the so-called resistance and the imaginary as reactance. Such a description in frequency domain is
actually only valid for linear transfer functions. The non-linear dynamic response of resonators is
commonly given by describing functions. That means that the impedance is defined depending on
the amplitude. This approach neglects higher harmonics. Nevertheless, it reflects the major dynamics
well. As mentioned above, the behavior of the resonator is often described as mass-spring-damper
system and reads as

(1) Zs(ω) = Rl +Rnl + i(mω −K/ω) .

Here, the term m accounts for the mass in the neck taking part in the oscillation and K for the
compressibility of the backing volume. The variable Rl denotes the linear resistance reflecting for
the thermo-viscous losses due to friction at the walls of the neck. If the amplitudes are large enough,
the flow separates at the edges transforming additional energy to the hydrodynamic mode from the
acoustic mode, which is irrotational by definition. This is a non-linear mechanism depending on the
current amplitude and is captured by the term Rnl. All terms in Eq. (1) are determined by analytical
models but they also contain some empirical correlation values. According to Keller and Zauner [8]
and Garrison et al. [9], they are approximately given as

(2) m = (1 + s) leρ̄, K =
Aρ̄c2

V
, Rl = sρ̄(l0 + ls)ω, and Rnl = ϵnlsρ̄ d0ω,

where the mean pressure, density, and speed of sound are denoted by p̄, ρ̄, and c, respectively. The
geometry is described by the backing volume V as well as by the neck area A, and length l0. The
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boundary layer effects are included in the parameter s1. The effective mass oscillating around the
neck is determined by adding a correction to the neck length. Similarly for the viscous losses, l0 is
extended by ls. The non-linear losses are captured by the non-linear correlation factor ϵnl. The angular
eigenfrequency of the resonator is given as the ratio of m to K, thus ωeig = c

√
A/(V (1 + s) le). In

the following, the impedance Zs is normalized by the free impedance ρ̄c, i. e., Z = Zs/(ρ̄c).
In the resonance tube located in front of the resonator, the acoustic field can be described by

the Riemann invariants defined as f = 1/2(p
′
/(ρ̄c) + u

′
) and g = 1/2(p

′
/(ρ̄c) − u

′
) and depicted

in Fig 1. In terms of these quantities, the impact of the Helmholtz resonator is determined by the
reflection coefficient R = g/f . The relation between this coefficient R and the normalized impedance
Z is given by Z = (1 +R)/(1−R).

3. Setup

Several test cases are investigated both numerically and experimentally. These cases consist of
combinations of three different neck profiles and two different backing volume lengths lcav in a res-
onance tube with diameter dcav. The considered necks have the same length l0 and diameter d0 but
differ in their edge profiles. One of the necks has a sharp edge (lc = 0) where the other two have 45◦–
chamfers with different sizes lc. The geometrical specifications are given in Tab. 1. The reflection
behavior of these test cases is studied for various SPLs, in particular for 89.3, 115.6, and 119.7 dB.

Table 1. Geometric properties (in mm).

Considered chamfer lengths Volume lengths Common parts
lc lc lc lcav lcav l0 d0 dcav
0 0.35 1.0 10 20 4.0 4.2 50

3.1 Experimental Setup

The experiments have been carried out with an impedance tube in an semi-anechoic chamber.
The tube has six BSWA MPA416 microphones with the average sensitivity of 50.45 mV/Pa. They are
equally distributed along the 1-m long tube and the distances between two successive microphones are
175 mm. The microphones are relatively calibrated to carry out reflection coefficient measurements
from 100 Hz to 700 Hz. The inner diameter of the tube, dcav, is 50 mm.

The data acquisition and signal processing is done by a combination of NI PCIe-6361 X-Series
DAQ card and LabView R⃝. One analogue output channel for the loudspeaker and six analogue input
channels for microphones are used. The sampling rate for generated signal is 20 kHz while it is
10 kHz for recording. The closest microphone to the tube termination is selected as the reference
input. The LabView R⃝ script regulates the excitation amplitude of the loudspeaker for each frequency
step. Doing so, it is possible to have the same – or very close – SPLs throughout the entire frequency
span. It is important to note here that this reference microphone is placed 49.7 mm away from the
tube termination. Accordingly, the SPLs are calculated at this position. The reference position would
ideally be located at the resonator mouth, but due to physical constraints, placing a microphone at that
position was not possible in this setup.

Some precautions are taken to minimize the measurements errors. First, the recorded data from the
microphones are processed using a lock-in method instead of using FFT. Secondly, the visco-thermal
effects in the tube are included [10] and implemented in the wave decomposition [11]. Finally, instead

1s = (1 + (κ − 1)/
√
Pr)

√
2ν/ω /d0, where the variables Pr, κ, and ν denote the Prandl number, the heat capacity

ratio, and the kinematic viscosity, respectively.
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of assuming a value for the speed of sound, it is treated as an extra unknown in the over-determined
set of equations [12]. With all these specifications and precautions, the deviation from the theoretical
closed-end reflection coefficient value is less than 0.5 % in the frequency of interest.

3.2 Numerical Setup

The compressible Navier-Stokes equations with k-equation eddy-viscosity subgrid-scale model
are solved in 3D using the Pimple algorithm of OpenFOAM [13]. The tolerance for stop criterion
for outer iteration loops accounting for compressible pressure-velocity coupling are set low – i. e.,
accurate – enough to resolve the acoustic field in details. Here, a threshold for the pressure residual
of 10−5 was applied.The time step size ∆t is adjusted such that the acoustic CFL number c∆t/∆x is
clearly below unity in the main parts. Only close to the walls, this number can be slightly larger, but
the acoustic behavior is still resolved accurately in those regions due to implicit time integration.

The geometrical dimensions of the neck configurations and of the backing volumes are set in
analogy to the experimental setup properties summarized in Tab. 1. At the corresponding boundaries,
the no-slip condition is utilized. The slip condition is used at the cylindrical wall of the impedance
tube which does not belong to the resonator itself. For each geometry investigated, a structured o-
grid mesh with at least 0.8 million cells is set up. Hereby especially, the boundary layer, whose
thickness can a priori be estimated by the Stokes length δs = 2π

√
2ν/ω, must be resolved well for

the frequencies of interest. In the linear regime, grid independence studies and validation have proved
the appropriateness of such a setting, see [14].

At the distance lsim = 10 cm, the inlet patch is located, where the Navier-Stokes characteristics
boundary condition (NSCBC), c. f. [15], is applied. This boundary condition ensures a low acoustic
reflection of the outgoing g wave. Simultaneously, an input signal can be imposed for the incoming
f wave. At this inlet plane, the fluctuating pressure p

′ and velocity u
′ are measured. From these

quantities, the time series of the Riemann invariants f and g can be computed directly. For that
purpose, the distance lsim is chosen large enough such that non-acoustic disturbances as the vortices
present in the vicinity of the neck do not influence the measurement.

The reflection coefficient is estimated from the measured input f and output g time series. First,
these time series are shifted with respect to each other to account for the time it takes to travel from
the reference plane to the resonator and back. Then for the identification, two approaches are applied
depending of the present regime. In the linear regime corresponding to a low SPL as 89.3 dB, linear
system identification techniques are used. Here, the domain is excited with a well-designed broad-
band signal. From the response, a second order Output-Error model is estimated, valid for the whole
frequency range of interest [14]. In the non-linear regime with higher amplitudes, harmonic simu-
lations are performed with several angular frequencies ωm. For the determination of the numerical
Rnum(ωm) = fft(g)(ωm)/fft(f)(ωm), the signals are additionally truncated to get rid of the transient
starting behavior and to have a signal length of a multiple of the period 1/(2π ωm). The amplitude of
the input signal f is calculated according to the the experimental data.

4. Results

Gain and phase of the reflection coefficient are presented for the SPLs investigated for all cases
with lcav = 20mm in Fig. 2. The reflection coefficient is transformed to the normalized surface
impedance Z, using the relation Z = (1+R)/(1−R) and plotted in Fig. 3. Due to lack of space, only
the results for the backing volume with 20 mm length are shown in the present paper. The following
discussions and findings are equally supported by the other cases with 10 mm backing volume length.

For all geometries, experiment and simulation agree very well in the linear regime. The evaluation
of the 89.3 dB simulations confirms that the flow does not separate at the edges. That means that the
Stokes boundary layer is resolved sufficiently in the simulations to capture the thermo-viscous dissi-
pation taking place in that region. In the non-linear regime, the agreement is only of qualitative, but
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Figure 2. Reflection coefficient in gain and phase representation for all configurations with lcav = 20 
mm. "— • —": measurement results; "—": linear SI results; and "◦": harmonic simulation results.

The colors correspond to different SPLs as indicated by the legends in the subfigures.
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Figure 3. Normalized impedance determined in resistance and reactance representation for all con-
figurations with lcav = 20 mm. "— • —": measurement results; "—": linear SI results; and "◦": 
harmonic simulation results. The colors correspond to different SPLs as indicated by the legends in 
the subfigures.
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(a) Sharp edge. (b) With 1 mm-chamfer.

Figure 4. Snapshots of the velocity field (white arrows) in the neck during the outflow with 119.7 dB.

not of quantitative nature. The reactance ℑ(Z) curves still match for all cases and amplitudes in that
regime. But, the non-linear resistance is systematically over-predicted by the numerical simulations
for all cases. The reason for this over-prediction is topic of ongoing research. The grid dependency as
well as the influence of the sub-grid scale modeling have to be studied in more detail. Another reason
might be that the edges are perfectly sharp in the simulation, whereas they are not in reality. Never-
theless, the simulations provide a detailed view on the flow present in the resonator. The following
statements are confirmed by both experiment and simulation in the same manner.

First, the influence of the edge geometry on the eigenfrequency is discussed. This is a linear effect
and, thus, independent on the current SPL. Only for very high amplitudes beyond the SPL considered
in this study, the eigenfrequency is nominally influenced by the amplitude, see for instance [1]. The
eigenfrequency can be detected by the minimal gain of the reflection coefficient. The corresponding
phase is either −π in the non-over-damped case or 0 in the over-damped case. Moreover, the reactance
ℑ(Z) vanishes at the eigenfrequency. With these criteria, a shift of the eigenfrequency towards higher
frequencies with increasing the chamfer size can be observed. In the specific case of 20 mm cavity
length, the eigenfrequency rises from around 375 Hz without a chamfer, to approximately 385 Hz
and 410 Hz with the 0.35 mm and 1 mm-chamfer, respectively. This shift can be explained by a
reduction of the effective length with increasing the chamfer length. For the three cases, the resulting
effective length are 7.19 mm, 6.82 mm, and 6.02 mm, respectively. The detected effective length of
the unchamfered case go in line with the correlation by Ingard [16]. He suggested for large aspect
ratios (d0/

3
√
V ≪ 1) an end correction of 8/(3π)d0, which would lead to an effective length of

7.56 mm. The observed reduction of the effective length with non-sharp edges has already been seen
by other authors, see, e. g. [8]. In the analogy of the mass-spring-damper system discussed in Sec. 2,
this means that less mass in the neck is taking in the oscillation with increasing the chamfer size.

Moreover, a reduction of the non-linear resistance can be observed in the presence of a chamfer.
As discussed in Sec. 2, the non-linear resistance results from the flow separation the resonator edges.
Two velocity field snapshots during the outflow for a sharp and a 1-mm-chamfered edge case with
119.7 dB excitation are presented in Fig. 4. In the sharp edge case visualized in Fig. 4(a), it can
be observed that the flow separates at both the inner and the outer edge. Two large recirculation
zones are temporally formed downstream of the respective edge. One of these zones is located in
front of the resonator mouth and the other in the neck. Chamfering the sharp edges produces four
obtuse edges that cause the flow to separate with smaller recirculation zones; see Fig. 4(b). The
observed contraction of the stream motivates a comparison with the quasi-static theory including the
vena contracta effect. The vena contracta for large amplitudes for sharp edges is about 0.70 while
it is 0.95 for chamfered edges [17]. Since the non-linear losses scale approximately linear with the
square of the jet velocity, the non-linear residence is inversely proportional to the square of the vena
contracta factor. This explains the observed difference in the non-linear residence for high amplitudes
by a factor of around two, see Fig. 3 and discussion below.
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In the non-linear regime, increasing the amplitude always promotes the separation and, thus, leads
to higher non-linear losses. This results in larger resistance values for higher excitation amplitudes in
all cases, see Fig. 3. If the resonator is normally damped, the normalized acoustic resistance ℜ(Z)
is below unity – the optimal resistance value for normal incident acoustic waves, i. e., ℜ(Z) < 1. In
that case, the increase of the acoustic resistance leads to a lower gain of the reflection coefficient, as
it can be seen in the right columns of Figs. 2 and 3. This lower gain means that a higher proportion
of the acoustic energy is dissipated. The situation changes in the over-damped case where ℜ(Z) > 1
(c. f. left column in Figs. 2 and 3): Here, the additional non-linear resistance leads to a decrease in
absorption. The normal and over-damped cases can also be distinguished by the examination the
phase curve of the reflection coefficient ̸ R. These phase angles differ from each other close to the
eigenfrequency. In the over-damped case, it is 0 whereas it is −π in the normal damped case. In both
cases, the waves f and g are in phase – i. e., ̸ R = 0 mod 2π – away from the eigenfrequency.

With the 1 mm-chamfer, none of the investigated SPLs lead to an over-damped behavior, whereas
both non-linear cases are in the over-damped region for the sharp edge geometry. Notice that not only
the non-linear but also the linear resistance varies with the edge profile. For instance, linear resistance
decreases by 11% and 22% for the cases of 0.35 mm and 1.0 mm–chamfers, respectively. This shows
that increasing the chamfer size reduces the thermo-viscous effect around the neck. Yet the impact
on the resistance becomes more striking in the non-linear regime caused by a reduction of shedding.
With the 0.35 mm-chamfer, the non-linear resistance is reduced by approximately 47 % and 55 % for
the 115.3 dB and 119.7 dB case, respectively. A reduction of 57 % and 70 % is measured with the
1 mm-chamfer. The stated values correspond to experimental data. The magnitudes are similar for
the simulation. Mainly, the presence of a chamfer reduces the non-linear losses significantly. The
actual length of the chamfer also influences this reduction but in a minor manner. Moreover, it can be
be observed that the relative reduction is larger for higher SPL. This fits well to the above discussed
flow properties: the strong separation with its large recirculation zones causes the high non-linear
acoustic absorption in the sharp edge case. Much less energy is taken from the acoustics by the four
separation areas with little recirculation in the chamfered case. The separation process itself is mainly
determined by the sharpness of the edge.

5. Conclusion and Outlook

The influence of the edge shape of a Helmholtz resonator has been investigated by means of
both experiments and LES simulations. To study this influence, various combinations of necks with
different chamfer sizes and backing volumes have been considered. By variation of the SPL, the
linear regime, where thermo-viscous losses are dominant, as well as the non-linear regime, where
vortex shedding leads to additional losses, have been included.

In the linear regime, the results obtained from both methods match very well. The results agree
qualitatively in the non-linear regime as well, even though the absolute values slightly disagree. The
simulations overpredict the non-linear resistance. The reason for this disagreement is topic of ongoing
research. Nevertheless, the following statements are supported equally by both the experimental and
numerical investigations.

By increasing the chamfer size, a shift towards higher eigenfrequency frequencies has been ob-
served. This shift occurs due to the fact that the oscillating mass in the neck is reduced, i. e., the
effective length is shortened. This reduction is in good agreement with other correlation available in
the literature.

Another important observation is that a chamfered edge profile reduces the vortex shedding in
the resonator neck significantly. Depending on the SPL, the chamfered edge profile reduces the non-
linear resistance about the half of its value compared to the sharp edge case. This reduction is mainly
due to presence of the chamfer, but depends only weakly on its length. To the authors’ knowledge,
this is the first time that this effect has been quantified for the Helmholtz resonator.
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