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The prediction of thermo-acoustic instabilities, causing large pressure oscillations, is funda-
mental in combustion systems such as domestic burners and industrial gas turbine engines as 
they cause thermal and mechanical stress to the equipment leading to premature wear or 
even critical damage. Hysteresis is a known phenomenon observed in the experimental study 
of thermo-acoustic oscillations in a duct, when a certain parameter (e.g. the heater position, 
heater power or pipe length) is varied. In order to understand the physical mechanism which 
causes hysteresis, we develop a model where the heat source is described by an FDF (flame 
describing function) and the acoustic field by a Green's function approach. The acoustic field 
has the form of a superposition of modes. We study the individual modes and their stability 
behavior. An individual mode i has two different (complex) frequencies, depending whether 
or not there is thermo-acoustic feedback:  ωi denotes the frequency for the no-feedback case, 
while Ωi denotes the frequency of the heat-driven mode. The imaginary part of Ωi is an indi-
cator for the mode's stability. Stability maps are calculated for a range of heat-source posi-
tions and oscillation amplitudes. These are supplemented by time-history calculations, which 
reveal the evolution of the thermo-acoustic instabilities, in particular limit cycles and hyste-
resis. The results show that the model is able to predict hysteresis and to describe its depend-
ence on system parameters. 

1. Introduction 
When a heat source, such as a flame or hot gauze, is placed into a duct, thermo-acoustic feed-

back can occur between the heat release and the acoustic field of the duct, which may result in the 
amplification of small amplitude perturbations. The study of the stability of the system to perturba-
tions is fundamental to identify the operating conditions in which such instabilities can be avoided. 
Experimental [1,7], analytical [2] or numerical [8] investigations are commonly performed using 
simplified configurations/models for the burner, such as a Rijke tube, and the characteristics of 
acoustic oscillations are produced for different sets of pipe and heater parameters. In particular 
many experimental measurements [7] show evidence of hysteresis in pressure/velocity time series 
when a given parameter, such as the heater power or position, is gradually increased/decreased. In 
this paper we will present an analytical model, based on modal analysis and Green’s function, to 
investigate the stability of the Rijke tube and the phenomenon of hysteresis. We will assume the 
acoustic field in the pipe to be one-dimensional and consider a compact heat source. 
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2. Model for the heat release   
For a compact heat source, the heat release can be generally described by the following equation  

(1)  q(x,t) = q(t)δ (x − xq ) , 

where xq is the source position and q(x,t) is a local heat release rate (i.e. the heat release rate per unit 
mass) with units of power per unit mass.  
For our analysis we will characterize the heat release rate using a Flame Describing Function 
(FDF), whose form is derived from experimental measurements [1] performed by the EM2C group 
at Ecole Centrale in Paris for a burner composed of a resonant cavity and a matrix flame.  

Following [3], we can extrapolate a heat release law that fits the experimental data as follows. In 
the time domain the heat release law is written as 

(2)                                
  

Q(t)
Q

= n1

u(t −τ )
U

− n0

u(t)
U

    

Where: 𝑄 and 𝑄 are the fluctuating and mean part of the heat release rate respectively, u and 𝑈 are 
the acoustic velocity and mean flow, n0 and n1 are two constants that describe the heat release de-
pendence on acoustic fluctuations and τ is a time lag. Rewriting equation (2) in the frequency do-
main we can derive the flame transfer function 

(3)                                 T ω( ) = n1eiωτ − n0  ,  

and the gain  

(4)   T ω( ) = n0
2 + n1

2 − n0n1 cosωτ  

In the experiment the acoustic velocity amplitude A, the frequency ω and the time lag τ were 
measured together with the maximum gain. Then, in order to compare with the measurement in [1], 
the constants n0 and n1 were chosen as follows  

(5)  n0 + n1 = gmax
       

and       n0 − n1 =1  

in order to have a gain of 1 for 𝜔 = 0 and the maximum of the gain gmax equal to the sum of the two 
constants. From the comparison it is possible to extrapolate an approximated analytical form both 
for gmax and τ, as a function of the normalized acoustic velocity amplitude 𝐴/𝑈:  

(6)                                  gmax = g0 − g1
A
U

 

(7)                                  τ = τ 0 +τ 2
A
U

⎛
⎝⎜

⎞
⎠⎟
2

 

    We notice that we have a constant term, denoted by the subscript 0 and an amplitude dependent 
term: the maximum gain has a linear dependence on the perturbation amplitude, regulated by a 
factor g1 and  the time-lag has a quadratic dependence, multiplied by a factor τ2. These expressions 
are valid approximations of the trend observed in [1] when the amplitude dependent term in 
equation (6) is not bigger than the constant g0. Since we have introduced a dependence on the 
perturbation amplitude, the transfer function in equation (3) is now a FDF, T(𝜔,𝐴). 

3. The Green’s Function 

The Green’s function 𝐺(𝑥, 𝑥!, 𝑡, 𝑡) is the velocity potential created by an impulsive point source 
located at x’ and firing at t’. It is obtained as the solution of the governing equation  
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(8)  1
c2

∂2G
∂t2

− ∂2G
∂x2

= δ (x − x ')δ (t − t ') ,  

with the boundary conditions of the system under consideration, here a resonator with end 
conditions described by reflection coefficients R0 at the inlet and RL at the oulet. It consists of a 
superposition of modes, with modal amplitudes gn and modal frequencies ωn: 

(9)  G(x, x ',t,t ') = H (t − t ')ℑ gn (x, x ')e
− iωn (t−t ')

n=1

∞∑   

The gn and ωn are calculated for different characteristics of the tube, modelling the end condi-
tions and the eventual presence of a jump in the cross-sectional area [4], a blockage [5] or a temper-
ature jump/gradient [6]. For the case of a sharp temperature jump, generated by the source at 𝑥!, the 
tube is divided into two parts: a cold zone, upstream of the heat source, with speed of sound 𝑐 = 𝑐! 
and a hot zone, downstream, with speed of sound 𝑐 = 𝑐!. The modal amplitudes 𝑔!   of the Green’s 
function for this configuration are given by 

(10) gn (x, xq , x f ,ω n ) = 2
c2
ω n

ω n

c2
ρ1A ω n , x f( )E(ω , xq )+ ω n

c1
ρ2B ω n , x f( )J(ω n , xq )

F '(ω n , x f )
C ω n , x( )  

with: 
 

(11) 
  
F(ω , x f ) = i

ω
c1
ρ2B ω , x f( )C ω , x f( )− iωc2 ρ1A ω , x f( )D ω , x f( ),

  
 

(12) 

A(x,ω ) = R0e
iω
c1
x
+ e

− iω
c1
x

C(x,ω ) = e
iω
c2
x
+ RLe

− iω
c2
(x−2L )

E(x, x f ,ω ) = e
iω
c2
(x f −x )

+ e
− iω
c2
(x f −x )

B(x,ω ) = R0e
iω
c1
x
− e

− iω
c1
x

D(x,ω ) = e
iω
c2
x
− RLe

− iω
c2
(x−2L )

J(x, x f ,ω ) = e
iω
c2
(x f −x )

− e
− iω
c2
(x f −x )

 

where xf is the position of the temperature jump which, in the following, will be set at the same 
position of the heat source, here 𝑥!. For details about the procedure used for the derivation see ref-
erences [2,4].  

4. The integral governing equation 
The acoustic velocity in the Rijke tube can be calculated from the Green’s function and a heat 

release law, when the latter is of the form in Eq.(1). The following  integral equation has been 
derived in [4] 

(13) u(xq ,t) =
∂φ
∂x x=xq

= − γ −1
c2

∂G(x, x ',t,t ')
∂xt '=0

t
∫

x=xq

q(t ')dt '− ϕ0

c2
∂G
∂x∂t ' x=xq

t '=0

+ ϕ0
'

c2
∂G
∂x x=xq

t '=0

 

where 𝜙(𝑥, 𝑡) is the velocity potential. The integral term represents the response of the acoustic 
field to the forcing by the unsteady local heat release rate 𝑞 𝑡 𝛿(𝑥 − 𝑥!). The last two terms are 
due to the initial conditions 

(14)                 ∂φ(x,t)
∂x t=0

= ′ϕ0δ (x − xq )
      

and       φ(x, t) t=0 =ϕ0δ (x − xq )  

These represent the initial perturbation at the heat source, whose strength is given by the 
constants 𝜑! and  𝜑!! . 
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4.1 Numerical solution: prediction of the time history  
The integral equation can be iterated numerically to obtain the time evolution of the perturbation as 
follows. We define the integral  

(15)  In (t) = eiωn ′t q( ′t )d ′t + eiωn ′t q( ′t )d ′t
′t =t−Δt

t

∫
′t =0

t−Δt

∫   

so that, considering the modal form of G in Eq.(9), the integral equation (13) becomes 

(16) uq (t) = − γ −1
c2

ℜ Gne
−iωnt In (t)

n=1

∞

∑ − 1
c2

ℜ (ϕ0 − ′ϕ0 )
n=1

∞

∑ ϕ0

c2
Gne

−iωnt

  
with  Gn = i

∂gn
∂x x '=xq

x=xq

 

Taking a small time-step Δt, the integral In can be approximated as  

(17)  In (t) = In (t − Δt)+ q(t − Δt)
1− e−iωnΔt

iωn

e−iωnt   

Then we describe q(t) using Eq.(1) and the correlation for the global heat release in Eq.(2), where 
the acoustic feedback is modelled by the dependency on the acoustic velocity perturbations. We 
obtain 

(18)  q(t) = K n1uq (t −τ )− n0uq (t)⎡⎣ ⎤⎦  and  K = Q
USρ

,  

where S is the tube cross section. Finally, setting an initial value for 𝜑! and 𝜑!!  to have 𝑢!(𝑡 = 0), 
and observing that 𝐼! 𝑡 = 0 = 0, we can iterate Eq.(17) for each subsequent time-step. 

4.2 Modal analysis         
In order to predict the response of the acoustic field to perturbations, we are going to investigate 

the stability of each acoustic mode. The acoustic velocity will be represented by a superposition of 
heat driven modes with amplitudes um and complex frequencies Ωm 

(19)    u(t) = ume
−iΩmt +

m=1

∞

∑ u
m

*eiΩm
* t  

Equating the modal acoustic velocity with equation (13), using the modal expression for the 
Green’s function in equation (9) and the heat release law in (18), we obtain an expression for the 
heat driven frequencies and amplitudes. We will just report here the final result, more details on the 
derivation can be found in [2]. 

(20)   Gn (n1e
iΩmτ − n0 )

i ωn −Ωm( )n=1

∞

∑ −
G

n

*(n1e
iΩmτ − n0 )

i ω
n

* +Ωm( ) = 2
KB

 

(21)                        
u

m

* (n1e
− iΩm

* τ − n0 )
i ω

n

* −Ωm
*( )m=1

∞

∑ + um (n1e
iΩmτ − n0 )

i ω
n

* +Ωm( ) = ′ϕ0 +ϕoiω n
*

KBc2
 

 Equations (20) and (21) show that the eigenmodes of the system depend on the parameters that 
describe the source, as the heater power K, and on the response of the source to acoustic perturba-
tions, as the time lag τ and the gain. They are the heat driven modes of the system and are associat-
ed to complex frequencies, called heat driven frequencies. When acoustic feedback is present, the 
Ωms will differ from the ωn with a non-negligible shift both in the real and imaginary part.  

5. Stability maps 

5.1 Predictions 
The imaginary part of the Ωms carries the information on the stability of the system for a given 
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set of parameters, from which we can produce a stability map. To do so we proceed as follows. We 
initially calculate numerically the resonant frequencies of the system from the characteristic equa-
tion 𝐹 𝜔 = 0 with 𝐹 given in (11), using the Newton-Raphson method. Then we solve numerical-
ly equation (20), using equations (5) and (6) to find 𝑛!(𝐴/𝑈), 𝑛!(𝐴/𝑈) and 𝜏(𝐴/𝑈) for different 
values of the flame position 𝑥! and perturbation amplitude, and find the Ω!s. The stability maps are 
then plotted for a single mode, Ω!, in order to better analyse the dependence on system parameters.  
In Figure 1 are shown the maps for the following situations: a) a sharp temperature jump at the heat 
source 𝛥𝑇 = 156°𝐾, with 𝑇! = 304°𝐾, so that 𝑐! = 350𝑚/𝑠 and 𝑐! = 430𝑚/𝑠 with heater power 
constant 𝐾 = 3×10!  𝑊𝑠!!𝑘𝑔!!, and the case in which the temperature can be approximated as 
uniform in the tube with b) 𝑐 = 350𝑚/𝑠 and 𝐾 = 3×10!  𝑊𝑠!!𝑘𝑔!! c) 𝑐 = 390  𝑚/𝑠   and 
𝐾 = 3×10!  𝑊𝑠!!𝑘𝑔!! d) 𝑐 = 350  𝑚/𝑠  and higher heater power, 𝐾 = 5×10!  𝑊𝑠!!𝑘𝑔!!.  We use 
the following values for the gain and time-lag parameters: 𝑔! = 1.4, 𝑔! = 0.3, 𝜏! = 5×10!!𝑠 and 
𝜏! = 4.4×10!!𝑠. The length of the duct is 𝐿 = 2𝑚. 

 
a)  𝑐! = 350!

!
,   𝑐! = 430!

!
,  𝐾 = 3×10!  𝑊𝑠!!𝑘𝑔!!. 

 
b) 𝑐 = 350!

!
,𝐾 = 3×10!  𝑊𝑠!!𝑘𝑔!!. 

c)  𝑐 = 390!
!

 and 𝐾 = 3×10!  𝑊𝑠!!𝐾𝑔!!. d)  𝑐 = 350 𝑚
𝑠
  and 𝐾 = 5×10!  𝑊𝑠!!𝐾𝑔!!. 

Figure 1. Stability maps for the heat source position 𝑥! and perturbation amplitude 𝐴/  𝑈 in a Rijke tube. 
𝑔! = 1.4, 𝑔! = 0.3, 𝜏! = 5×10!!𝑠 and 𝜏! = 4.4×10!!𝑠. RED: unstable, WHITE: stable. 

The red zones indicate, for each source position 𝑥!, the range of amplitudes for which the system is 
unstable: when the system enters an unstable zone the amplitude of the perturbation grows in time 
until the border with a stable zone is found. When the system is in a stable zone (white colour) the 
amplitude drops to reach the border with a lower unstable zone. We observe that in Figure 1 a),c) 
and d) the stable zone SR1 splits into two parts, separated by an unstable region. The extension of 
this zone vary with heater power and temperature, becoming wider for increasing T and K. Differ-
ent types of interfaces between the stability zones can be identified in the maps. We can observe a 
vertical transition line, which determines the transition of the system from stable/unstable when the 
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source position value crosses 𝑥! in each direction. The interface between a lower unstable zone and 
an upper stable zone (e.g. between UL1 and SL1) corresponds to stable limit cycles: any small varia-
tion of 𝐴/𝑈 from the interface value will bring the perturbation back to the initial amplitude. The 
interface between a lower stable zone and an upper unstable zone (e.g. between SL1 and UL2), in-
stead, will correspond to unstable limit cycles: any small variation of 𝐴/𝑈 from the interface value 
will bring the system either in the lower stable zone, with a decrease of the perturbation amplitude, 
or in the unstable zone, where the perturbation will grow until the interface with the next stable 
zone. 

5.2 Validation 
In order to validate the stability maps, we have performed simulations of the time evolution of 

the acoustic perturbations for different values of 𝑥! . The latter are based on the numerical solution 
of Eq.(13), iterating as described in section 4.1, and using the same parameters as for the stability 
maps. An example is shown in Figure 2a), where the time-history of the acoustic velocity is calcu-
lated at 𝑥! = 1.47  𝑚. The simulations confirm at all points the stability behaviour in the maps: for 
each set of parameters, stable limit cycles are found whose amplitude corresponds, at each position 
𝑥!, to the stable limit cycle interface in the corresponding map.   

The time evolution of the perturbation also shows that the frequency in the spectrum does not 
correspond to the modal frequency 𝜔! (no-feedback) of the pipe for that specific source position 
and system parameters. This is shown in Figure 2b): the frequency associated to the first mode for 
the no-feedback case is 𝜔! = 596  𝑟𝑎𝑑  𝑠!! while we find a peak in the spectrum at 565  𝑟𝑎𝑑  𝑠!!. 
This is the previously mentioned frequency shift from 𝜔! to Ω!, occurring as a result of the thermo-
acoustic feedback. The latter does not only affect the imaginary part, but also the real part with var-
iations up to 10% of the 𝜔!value. 

a) b)  
Figure 2. Time evolution a) and spectrum b) for the heat source position 𝑥!=147 cm and initial perturbation 
amplitude 𝑢!/𝐴 = 0.01 in a Rijke tube with a temperature jump at 𝑥! = 𝑥!, with 𝑐! = 350  𝑚/𝑠  and 
𝑐! = 430  𝑚/𝑠. 
 
We emphasize that we never use the 𝛺!s in the iteration procedure and time history calculations. 

6. Hysteresis 

6.1 Time-history calculations 
Simulations of the time evolution can be also used to study the transition of the system from one 

stability zone to the next one, when the location of the heat source is varied. 
To do so, we will proceed as follows: 1) A first simulation of the time evolution of the perturbation 
is performed for a heat source position close to the inlet 𝑥!! = 0.01𝑚 and initial perturbation am-
plitude 𝑢!/𝑈 = 0.01, for the time necessary for the perturbation to reach the saturation amplitude 
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(in general 10 s will be sufficient). We register the amplitude 𝐴!/𝑈 of the perturbation at saturation. 
2) We move the flame to the right by an interval Δx, to 𝑥!! = 𝑥!! + 𝛥𝑥 and we perform a new sim-
ulation with the new value of the flame position, using as the initial perturbation the value found in 
the previous simulation 𝑢!/𝑈 = 𝐴!/𝑈. At the end of the simulation, we register again the perturba-
tion amplitude 𝐴!/𝑈. 3) We repeat step 2 until we reach the outlet of the pipe. At each position the 
saturation amplitude is recorded. 4) We repeat the whole procedure, steps 1-3, in the opposite direc-
tion, from the outlet to the inlet, so that 𝑥!" = 𝑥!"!! − 𝛥𝑥 , and record 𝐴!/𝑈 at each step. The re-
sults are plotted in Figure 3a) and b) for the case of a temperature jump at 𝑥! and uniform tempera-
ture respectively. The solid line corresponds to the movement of the source position from left to 
right (L to R) and the dotted line from right to left (R to L) as indicated in the legend.  

a) b)  

Figure 3.  Perturbation amplitude 𝐴/  𝑈 extrapolated from time-history simulation for different heat source 
positions 𝑥! a) with a temperature jump at 𝑥! = 𝑥!, with 𝑐! = 350  𝑚/𝑠  and 𝑐! = 430  𝑚/𝑠  b) for uniform 
temperature 𝑐 = 350  𝑚/𝑠. Pink lines indicate the interface between stable/unstable zones. 

6.2 Discussion 
In Figure 3 a) and b) we observe two types of hysteresis which we will call ‘type 1’ and ‘type 2’. 
Hysteresis of ‘type 1’ is shown in Figure 3 b) by the blue arrows (forward direction) and green ar-
rows (backward direction). If the heat source is initially placed at a point in the region SR1, where 
the system is stable, any small perturbation will drop down to zero amplitude. Decreasing 𝑥!   of 
small steps (moving from right to left) the system will maintain its stability and move along the 𝑥! 
axis until we reach the transition 𝑥! = 𝑥!. After crossing the transition line and entering zone UL1, 
the amplitude grows since UL1 is an unstable region. The growth stops when the system reaches the 
interface with the stable region SL1, which corresponds to a stable limit cycle, and further decrease 
of 𝑥! leads the system along this interface. If the heat source is moved in the reverse direction (left 
to right), starting from a point in the region UL1, the system will move again along the interface 
between UL1 and SL1 until the transition line. At that point, there are two possibilities for the evolu-
tion of the perturbation: the system can enter the stable zone SR1 or it can enter the unstable zone 
UR1 above. Since the interface is curved and the variation of 𝑥! is discrete, there is a preferred di-
rection of the evolution, which is to enter UR1. Then the amplitude grows until the interface with 
the stable region above UR1. This is a stable limit cycle and further increase of 𝑥! leads the system 
along this interface. This means that the system will not follow the same path as when the heat 
source position was moved from right to left. This type of hysteresis is also observed in Figure 3 a) 
(but not marked with arrows). It occurs at the transition line 𝑥! and is entirely due to the con-
vex/concave shape of the interface.  
Hysteresis of ‘type 2’ is shown in Figure 3 a) by the blue arrows (forward direction) and green ar-
rows (backward direction). It covers a smaller portion of the pipe and is due to the fact that the low 
amplitude stability zone on the right of the transition line is divided into two parts, SR1 and SR1’, 
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separated by an unstable region. Starting from a point in the region SR1’ and moving the heat source 
backwards from the outlet, the system is stable until 𝑥! = 1.49  𝑚; after this point the system enters 
the unstable region UR1. The amplitude then grows until it reaches the interface with zone SR2. This 
is a stable limit cycle and further decrease of 𝑥! leads the system along this interface. Assuming 
that we stop before 𝑥!, and move forwards the heat source towards the outlet, the system will not re-
enter the stable zone SR1’ but will continue to follow the stable limit cycle interface until the outlet. 
A similar result will be obtained moving from/towards SR1. We notice that the size of zones SR1 and 
SR1’ determines the length of the pipe affected by hysteresis of second type, therefore varying K or 
temperature parameters (see Section 4) it is possible to control this type of hysteresis.  
We recall that we have made the assumption that, for each shift of 𝛥𝑥, the value of 𝐴/𝑈 before 
moving the flame is the same as the initial amplitude at the new position; different hysteresis path 
can be predicted assuming the perturbation is damped/increased as a consequence of the motion. 

7. Conclusions 
We have described thermo-acoustic oscillations and hysteresis in a Rijke tube, using a Green’s 

function model. The stability analysis is performed with two methods: 1) Direct derivation of the 
eigenfrequencies in presence of thermo-acoustic feedback, considering separately the stability of 
each mode. This method allows the identification of the attractors of the systems (limit cycles) as a 
function of different parameters. 2) Iteration of the integral governing equation to obtain the time-
history of the acoustic field. In this article we have considered just one mode in the integral equa-
tion to show that the solution is consistent with method 1), however higher modes can generally be 
included in the calculation to show the interaction between modes2.  

The Green’s function approach has the advantage of providing a fast prediction of the stability 
behaviour of the system as a function of its parameters, while also giving a physical description of 
the process, which is fundamental for the control of thermo-acoustic feedback in combustors. 
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