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The impact of swirl fluctuations on flame dynamics has been investigated by several authors and
results suggest that the overall flame response is governed by superposition of two or more flow-
flame-acoustic interaction mechanisms. In this context, the relative phases of the individual con-
tributions must be described accurately, which in turn implies that the propagation velocities of the
various perturbations must be known. While acoustic waves propagate with the speed of sound,
it is generally assumed that fluctuations of swirl are convected by the bulk flow and thus propa-
gate with the mean flow velocity. However, in both experiments and numerical simulations it was
observed repeatedly that the propagation speed of swirl waves may be noticeably higher than the
bulk flow velocity. In the present work a formulation for the propagation speed is proposed, which
is based on inviscid theory of confined swirling flows. The resulting formula consists of two prop-
agation modes with faster and slower speeds than the flow velocity. Moreover, it is established
that the azimuthal velocity and the duct size have significant impact on the propagation speed of
swirl fluctuations. In contrast to the constant propagation speed assumption, the new model de-
pends on the radial position. The importance of the radial momentum balance for the propagation
is emphasized. A validation study is performed by comparing the results against 2-D Large Eddy
Simulations. For this purpose the step responses to azimuthal velocity perturbations are exam-
ined. The resulting time-lag model can be introduced to low order models for the estimation of
combustion instabilities.

1. Introduction

The use of swirl in combustion systems is the key point for stabilizing the flame by reheating the
cold premixture through the re-circulation zones formed by vortex breakdown phenomenon. At the
same time, the swirling flow completely changes both flow and flame structures and their interaction
[1, 2]. Therefore it is essential to understand the physics behind the swirling flow in combustion in
order to predict the instability in the system.

One parameter that has an important impact on the flame response is the swirler position [2, 3].
By changing the swirler position, the flame dynamics can be altered by the interference between the
axial and tangential velocity perturbations, which have by nature completely different time scales.
This phenomenon has been studied by means of experiments and numerical simulations by Komarek
et al. [3].
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The axial velocity perturbations u′x associated with the acoustic waves in the system travel in
longitudinal direction ”x” with wave speed ūx ± c, where ūx is the mean axial flow velocity and c
is the speed of sound. For the tangential velocity perturbations u′θ, it is assumed that they propagate
in the longitudinal direction with the mean axial flow velocity up = ūx. Since the mean axial flow
velocities in combustion systems are at least one order of magnitude smaller than the speed of sound,
there is a huge difference between the time scales corresponding to the propagation of axial and
tangential velocity perturbations.

Several authors [3–6] assumed that tangential velocity perturbations propagate with the convective
flow velocity. Since their approach was limited to 1-D, the convective velocity is assumed to be equal
to the constant bulk velocity, which neglects the radial distribution of axial velocity. The propagation
speed assumption as constant bulk velocity is not matching with experiments and simulation results.
For example, Komarek et al. [3] measured the mean flow velocity after the swirler as ūx = 11.3
m/s, but the tangential velocity perturbations caused by the swirler propagate with a speed up = 19.5
m/s. This discrepancy stimulated the authors of the present paper to build a better model in order to
estimate the propagation speed more accurately.

A new formula based on the inviscid theory of confined swirling flows is adopted to estimate
up. The fundamental theory is proposed by Greitzer et al. [7, 8] to estimate the expansion of vortex
cores in unconfined and confined cylindrical ducts. With slight modifications, a new formula for up
is proposed and validated against 2-D LES simulations.

2. Theory

Greitzer studied the vortex core expansion in cylindrical flows by using the inviscid theory of
confined swirling flows. In his work the tangential velocity profile is modeled as a Rankine vortex,
whose core is characterized as a forced vortex and the outer region as a free vortex. The filament
that separates the forced vortex from the free vortex defines two control volumes for core and outer
regions. By solving linearized equations for mass and momentum combined with a simplified radial
momentum balance, the fluctuations in filament location can be estimated, which are then related with
the expansion behavior of the core flow.

A similar approach is used to estimate the propagation speed of azimuthal velocity perturbations.
In the present work it is not physical to assume a Rankine vortex for annular swirling flow after a
swirler. Therefore, there exists no distinct transition between the forced and free vortex, where the
filament is supposed to be placed. In the current approach, filaments stemming from each radius are
tracked instead of tracking only one of them. Therefore, the filament position ”a” is regarded as a
variable in the analysis. Varying filament position results in different control volumes, for which lin-
earized conservation equations are solved. By finding dispersion relation for linearized conservation
equations as described by Greitzer, the propagation speed is estimated as a phase velocity. It is as-
sumed that fluctuations in filament position are caused by tangential velocity perturbations, therefore
the estimated speed is also related to the propagation of azimuthal velocity perturbations.

The approach is applied to swirling flow in an annular cylindrical duct located after a swirler,
which is modeled as 2-D axisymmetric flow (shown in fig. 1) with the following assumptions;

– Incompressibility ρ = const.,
– Inviscid flow ν = 0,
– 2-D axisymmetric swirling flow. The azimuthal derivatives vanish ∂(.)

∂θ
,

– Radial flow velocity is small. ur = 0.
Inflow velocities are modeled as uniform profiles both in axial ux(r) = ux and azimuthal direction
uθ(r) = uθ. But, it is also possible to carry out the same analysis with different velocity profiles,
i.e free vortex, Rankine vortex and others, which result in different propagation speeds due to the
different radial pressure profiles obtained by eq. (1).
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Figure 1: 2-D configuration of axisymmetric swirling flow

Under the given assumptions, the radial momentum conservation equation is simplified to

(1)
∂p

∂r
= ρ

u2θ
r
,

which can be easily integrated as

(2) p (r)− pri = ρu2θ ln
r

ri
,

where pri is the pressure at the inner wall. It is also possible to use the pressure at the outer wall pro
instead of the inner wall for the integration.

The conservation of mass and momentum equations for the inner control volume (r < a) read,
respectively

(3)
∂ (A)

∂t
+
∂ (Aux)

∂x
= 0,

(4)
∂ (Aux)

∂t
+
∂ (Au2x)

∂x
= −A

ρ

∂ (pa)

∂x
,

where A = π (a2 − r2i ) is the area of the inner control volume, ux is the axial velocity in the inner
region and pa is the pressure at the selected filament.

Similarly, the conservation of mass and momentum equations for the outer control volume (r > a)
read, respectively,

(5)
∂ (AD − A)

∂t
+
∂ [(AD − A)Ux]

∂x
= 0,

∂ (AD − A)Ux
∂t

+
∂ [(AD − A)U2

x ]

∂x
= −

(
AD − A

ρ

)
∂ (pa)

∂x
+

[
(AD − A)u2θ
2 (A+ πr2i )

]
∂A

∂x
,(6)

where AD = π (r2o − r2i ) is the total area of the duct and Ux is the axial velocity of the outer region.
In order to examine the small amplitude perturbations analytically, the eqs. (3)–(6) are linearized

by expanding all variables q = q̄+q′ by their mean q̄ and fluctuating parts q′. The linearized equations
read as

(7)
∂ (A′)

∂t
+ ūx

∂ (A′)

∂x
+ Ā

∂ (u′x)

∂x
= 0,
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(8)
∂ (u′x)

∂t
+ ūx

∂ (u′x)

∂x
+

1

ρ

∂ (p′a)

∂x
= 0,

(9)
∂ (A′)

∂t
+ Ūx

∂ (A′)

∂x
−
(
AD − Ā

) ∂ (U ′x)

∂x
= 0,

(10)
∂ (U ′x)

∂t
+ Ūx

∂ (U ′x)

∂x
+

1

ρ

∂ (p′a)

∂x
− u2θ

2
(
Ā+ πr2i

) ∂ (A′)

∂x
= 0.

Linearization results in four partial differential equations for the variables (A′, u′x, U
′
x, p
′
a), there-

fore the system of partial differential equations is complete. The eigenmodes of the equations can be
calculated by applying the ansatz

(11)


A′

u′x
U ′x
p′a

 =


A0

ux0
Ux0
pa0

 ei(kx−ωt),
where A0, ux0 , Ux0 , pa0 are the constant amplitudes for corresponding variables, k is the wave number
in the axial direction and ω is the angular frequency.

Substituting eq. (11) in the linearized conservation eqs. (7)–(10) leads to four algebraic equations,
whose determinant must be equal to zero for non-trivial solution. This eigenvalue problem results in
a dispersion relation, which can be solved for the phase velocity ω/k as

(12)
ω

k
=

(
AD − Ā

)
ūx + AŪx

AD
±

√(
1− Ā

AD

)[
u2θĀ

2 (A+ πr2i )
− Ā

AD

(
Ūx − ūx

)2]
,

where the angular frequency is a real valued linear function of the wave number. This is an exceptional
case for the stability analysis. Perturbations are neither growing nor decaying and the propagation
speed is the only information that can be obtained from the analysis. The equation can be further
simplified by setting the axial velocities of inner and outer part to be equal Ūx = ūx and substituting
A = π (a2 − r2i ) and AD = π (r2o − r2i ). The resulting formula reads as

(13) up (a) = ūx ± uθ

√
(r2o − a2) (a2 − r2i )

2a2 (r2o − r2i )
,

where up = ω/k is called as the propagation speed for the perturbed quantities in eq. (11).

3. Interpretation

Although the azimuthal velocity uθ does not show up in eq. (11) as a perturbed quantity, it is
reasonable to surmise that fluctuations in the filament location are related to the azimuthal velocity
perturbations. The radial pressure gradient depends strongly on azimuthal velocity, as seen in eq. (1).
Perturbations in azimuthal velocity change the radial pressure gradient, which causes the filament to
be relocated. Therefore, the propagation speed up is relevant for azimuthal velocity perturbations.

The propagation speed here consists of two modes with faster and slower propagation speeds. The
radial momentum conservation equation eq. (1) is responsible for the presence of these modes. The
impact of the radial pressure gradient can be seen in the last term on the right hand side of the eq. (10).
In the absence of azimuthal velocity, the radial momentum equation has only the trivial solution, i.e.
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the radial pressure gradient being zero. In this case the perturbation is only convected with the axial
flow velocity.

The amount by which the propagation speed differs from the convective speed is specified by the
second term on the right hand side of eq. (13), which depends on the azimuthal velocity uθ, the duct
geometry ri, ro and the radius a. Different control volumes formed by radial variations of the filament
location result in different propagation velocities. Therefore, it is plausible to plot the two propagation
speeds as functions of radius (see fig. 2). It is shown that both fastest and the slowest propagation
speeds occur at same filament location, namely at a =

√
riro and the corresponding propagation

speeds are

(14) up (
√
riro) = ux ± uθ

√
(ro − ri)

2 (ro + ri)
.

The fastest and slowest propagation speeds are important for the validation cases in section 4 , because
it is easy to deduce from experiments and numerical simulations, when the perturbation starts acting
and vanishes.

up(a)

a

ux − uθ

√

(ro−ri)
2(ro+ri)

ux
ux + uθ

√

(ro−ri)
2(ro+ri)

ri

√

riro

ro Faster speed
Slower speed

Figure 2: Propagation speed versus filament position
4. Validation

The validation of the model is achieved by comparing step responses estimated by the model and
2-D CFD simulations of an annular duct. The step response is the response of the system to the input
as Heaviside function.

The response h(t) is defined as

(15)

∫ ro
ri

2πru′θ (∆x, r, t) dr∫ ro
ri

2πrūθ (∆x, r) dr
=

∫∞
0
h(τ)

(∫ ro
ri

2πru′θ (0, r, t− τ) dr
)
dτ∫ ro

ri
2πrūθ (0, r) dr

,

where the term in brackets on right hand side is the system input as the area averaged azimuthal
velocity perturbation imposed at inflow (x = 0) and the left hand side term is the system output as
area averaged azimuthal velocity fluctuations after ∆x distance. Both terms are nondimensionalized
with terms in denominators. The response is called as step response if the perturbation at the inflow
is imposed as a Heaviside function u′θ (0, r, t) = εūθ(0)H (t), where ε is a small real value.

For the analytical models the step response can be further simplified as

(16) h (t) =
1

AD

∫ ro

ri

2πrH

(
t− ∆x

up (r)

)
dr.
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The constant propagation assumption up = ūx yields to h(t) = H (t−∆x/ūx), which is shifted
Heaviside function and shown in fig. 3.

2-D incompressible LES simulations are performed with the CFD software OpenFOAM. The in-
flow velocity boundary conditions are assumed to be uniform as schematically described in fig. 1.
Slip wall boundary condition is applied on duct walls. The azimuthal velocity at the inflow is per-
turbed by broad-band signal. The step response of the system is estimated (for details refer [9,10]). In
the step response, the time lag corresponding to the first non-zero value is associated with the fastest
propagation speed and the time lag corresponding to the settling to the new steady value is associated
with the slowest propagation speed. The propagation speed can be computed by dividing the distance
between input and output planes by the time lag from the step response.

4.1 Validation against 2-D axisymmetric Navier-Stokes numerical simulations

The geometry and the bulk flow velocity of the reference test case correspond to the BRS burner
duct that was numerically and experimentally analyzed by Komarek et al. [3]. The inner and outer
radii are respectively, ri = 8 mm and ro = 20 mm, the axial and azimuthal velocities are assumed
to be uniform and equal ux = Ux = uθ = 11.3 m/s. Broadband perturbations in azimuthal velocity
are imposed at the inflow and the area averaged azimuthal velocity is measured 50 mm after inflow.
The estimated step response is shown in fig. 3a. The time is nondimensionalized by diving it to the
reference time tref = ux/∆x. The reference time is the propagation time lag that is computed with
the constant propagation speed assumption between the input and output planes.

The propagation speed up depends on the azimuthal velocity uθ and inner and outer radii of the
duct. In order to validate these dependencies, two more cases are considered. In one case the az-
imuthal velocity is halved uθ = 5.65 m/s and in the other one the inner radius of the duct is doubled
ri = 16 mm. The corresponding step responses are plotted in fig. 3b for the case with halved az-
imuthal velocity and in fig. 3c for the case with doubled inner radius.

The step response results show that the constant propagation speed assumption is inadequate and
not able to capture the nature of the propagation process. Good agreement is achieved with the new
model in all three cases (see figs. 3a–3c), especially for the fastest and the slowest propagation speeds.

By comparing fig. 3a with fig. 3b, the dependency of the propagation speed on the inner radius is
examined. Increasing the inner radius decreases the additional term of the propagation speed, which
resuts in narrower response. Similarly, decreasing azimuthal velocity results in narrower response
(see figs. 3a and 3c).

Although the shapes of step responses are not matching perfectly, the proposed model gives a new
level of understanding for the propagation mechanism. It is found out that the propagation consist
of two modes with different speeds and they depend not only on the radial position but also on the
azimuthal velocity and the size of the duct.

5. Conclusion

A new formula describing the propagation of azimuthal velocity perturbations is derived from the
inviscid theory of swirling flows presented by Greitzer [8]. The propagation speed is determined by
analyzing fluctuations in the filament position, i.e solving the linearized mass and momentum conser-
vation equations combined with the simplified radial momentum equation on the control volumes that
are separated by filaments. The fluctuations in the filament location are related with the propagation
of the azimuthal velocity perturbations via radial pressure gradient. It is shown that the azimuthal
velocity perturbations propagate as wave motion, which contains faster and slower speeds compared
to the axial flow velocity.

The constant propagation speed assumption is shown to be unsatisfactory, especially for the cases
with different azimuthal velocity and size. This explains why several authors [3–6] encounter differ-
ent propagation speeds for different geometries and swirlers. With the present model it is possible
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Figure 3: Step responses of the azimuthal velocity perturbation for constant propagation speed model
( ), present model ( ) and CFD result ( ). ux = 11.3 m/s, ro = 20mm.

to calculate the propagation speed more precisely for different geometries and different azimuthal
velocities. This is shown in fig. 3, where a parameter study is performed by changing the azimuthal
velocity and inner radius of the duct.

The present investigation is important for the prediction of the combustion instabilities. The dif-
ference in time scales for different physical phenomena is one of the key factors that control flame
dynamics, in particular strength of flame response. The time scale related with the axial velocity
perturbation that propagates with the speed of sound are at least one order of magnitude less than the
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time scale related with the azimuthal velocity perturbation that propagates with flow velocity. The
present model enables a better understanding of propagation of azimuthal velocity perturbations that
might be useful to predict the combustion instabilities more accurately. One key point of this analysis
is the response to the azimuthal velocity perturbations is weaker but longer in time compared to the
response with constant speed assumption. This is due to the spreading of the perturbation caused by
different propagation speeds.
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