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Overview of current work
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Fig 1: Different flow regions in a tube with blockage

* The hydrodynamic region is treated as an acoustic lumped mass

 The physical blockage is replaced by a hypothetical Blockage Integral
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1-D Mathematical model of tube with blockage

| | ¢/sarea= S,
I
c/sarea= S, |
Az | A3
open-end A - |- | /‘ -
- I
B, | - | ‘_B open-end
3
B, : Blockage
|
X1
-t -
X2
—
L
—~ —
- X

Fig 2: Schematic of a tube with area jump and blockage inside
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1-D Mathematical model of tube with blockage

| c/sa S
|
c/sarea= |
> At x=x, i, N )
open-end Az. | - % =P
B : - | -
(x1)= P, (x) =
Py (%,t) = P, (X | |
S, (X,t)=S,u,(xt) - —= J
- L
- x
> At X=X, Figure same as previous slide

pz(X,'[)— pg(x,t) =Pl (an(X,t)/G‘t)
U, (X t) =Uy (X, t)
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1-D Mathematical model of tube with blockage

> In matrix form we can write:

11 0 0 0 0 |(A] [0
a o _alks _ﬁge—ﬂ% Egejkxl 0 0 B 0
el ol _pl _pl 0 0 A 0
0 O gl el —poe M el <B2 o
0 0 (-jLyw/ce™ @+jL,wlce™ -’ e 1Al |0
0 0 0 0 e’ e ||B] |0

» Made use of Newton-Raphson method to solve the
characteristic equation
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Concept of Blockage Integral: Effective value of blockage
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Fig 3: Different flow regions

¢(X2)_¢(X1): Leﬁu(x1) in a tube with blockage
» Blockage Integral,  L.sr = fOL((l/r) oY /or) dé — L
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Concept of Blockage Integral

Blockage along single
hypothetical plane

temperature=T

I
I
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I temperature=T
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density= p density= p
wave speed= c wave speed= ¢
c/s area= A c/s area= A

Fig 4: Modified combustor model with
blockage lying on a single hypothetical plane
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Streamline Generation
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Fig 5: Streamlines for tube with high blockage
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Pressure profile in presence of blockage (for Mode 1)
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Fig 6: Pressure profile for blockage location, x=0.25L
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Modal frequency variation with respect to tube parameters

e Objective is to find out how modal frequency changes with
respect to

1. Blockage inside tube (expressed by blockage integral)
2. Area jump within the tube

3. Temperature jump within the tube

;::“ Kegle . - N. K. Mukherjee, Keele University 10
= University I\



Section 1: Effect of blockage on modal frequency

» Assumptions:
1. Effect of Area Jump neglected
2. Effect of Thermal Jump neglected

Blockage along single
hypothetical plane

temperature=T;
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pressure density= p: density= p1 pressure
node wave speed= c; | wave speed= C R
c/s area= A | c/s area= A
l
open-end I open-end
|
i s Fig 7: Tube model used for analysis
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modal frequency (rad/s)
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Section 1: Effect of blockage on modal frequency
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Fig 9: Blockage location, x=0.25L
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Section 1: Analysis using pressure profile (for Mode 1)
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Fig 11: Blockage location, x=0.50L
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Fig 10: Blockage location, x=0.25L
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Effect of Blockage Integral on Modal Frequency

e Reason for this response:
P, — P, = Pl (au/at)

» When particle velocity=0, blockage does not have any effect

» When particle velocity is maximum, blockage has maximum
effect
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Section 2: Effect of temperature jump on modal frequency

Assumption:

1. The Thermal Jump is step jump and not gradual
2. Effect of Area Jump neglected

3. Effect of blockage has been included in analysis.

Blockage along single
hypothetical plane

temperature=T:
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temperature=T; |
I

pressure density= p: density= p2 pressure
node wave speed= ¢, | wave speed= c; b
c/s area= A | c/s area= A
l
open-end i open-end
% I
— - Fig 12: Tube model used for analysis
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Section 2: Effect of temperature jump on modal frequency
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Fig 13: Temperature jump location, x=0.25L
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Section 2: Analysis using pressure profile (for Mode 1)
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Fig 14: Blockage location, x=0.25L
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Section 3: Effect of area jump on modal frequency

Assumptions:
Effect of blockage is neglected
Thermal jump is neglected
Area Jump is step jump and not gradual

density=p
pressure density=p temperature=T wave speed= ¢ pressure
node wave speed= ¢ ¢/s area= A, Seieratle=T node
c/s area= A,
open-end
open-end
X
——

Fig 15: Tube model used for analysis
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Section 3: Effect of area jump on modal frequency
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modal frequency (rad/s)

Section 3: Effect of area jump on modal frequency
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Section 3: Effect of area jump on modal frequency

when Area jump increases,
Modal freq increases

At pressure antinode,
Area jump does not alter Modal freq ==

when Area jump increases,
Modal freq decreases

Fig 20: pressure profile describing impact of area jump on modal frequency
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Section 3: Analysis using pressure profile (for Mode 1)
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Fig 21: Area Jump location, x=0.25L
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Section 3: Analysis using pressure profile (for Mode 1)
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Fig 22: Area Jump location, x=0.75L
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Special case: Analysis for combined area jump and
blockage

Acoustic
lumped
mass

A

Fig 23: Tube with combined area jump and blockage at the same location

» Hard to write the pressure continuity equation at area
expansion

P, — P, = ply (8u/6t)
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Special case: Analysis for combined area jump and

blockage
Lumped . . : .
Figure is same as previous slide
mass 2
Lumped I I
mass 1 : |pa
— P2 /
o P1 '/_l P2 I_
N o
' |
|
|

PL— P, :pLeffl(aul/at)
P, — P; = Pl (auz/at)

» By adding two pressure jump equations,

Pr—Ps = J,OCO( Lo Uy + Leff2u2)
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Result Verification: Use of Perturbation Method

> f=hte
» |In other notation, w = w,, + 2me

» Characteristic equation, f(w) = 0, leads to
» f(w, +2me) =0

In the final form, e = f(Lefrr (So/S1), (c1/c2), (p1/p2))

or, we can say, @ = f(Lep, (S2/S1), (e1/¢2), (p1/p2))
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Result Verification: for variable blockage value
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Fig 24: Blockage location, x=0.25L
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Result Verification: for variable area jump
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Fig 25: Area jump location, x=0.25L
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Result Verification: for variable temperature jump
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Fig 26: Temperature jump location, x=0.25L
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Conclusions made so far

1. Modal frequency decreases as blockage integral increases
2. Modal frequency may increase/decrease w.r.t area jump

3. Modal frequency increases w.r.t. thermal jump
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Scope of Future Work

 Cross check of the results for the case when blockage and
area jump location coincide

e I|dentify the effect of mean flow in analysis

e Try to verify these models through simulations/experimental
works
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Thank you
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