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The aim of this paper is to study two similar combustor designs: one with a small blockage and oth-
er with a larger blockage. We model the blockage as a lumped inertia and calculate its effective 
length by using the concept of the ‘Blockage Integral’. The integration is performed along a path in 
a hypothetical potential flow field in the combustor. The change of blockage integral with fluctua-
tion of blockage size will be observed. Subsequently, the eigen frequencies of the system will be 
evaluated and their variations with physical parameters like blockage size/profile, blockage location 
within tube and jump in cross-sectional area will be observed. The impact of different boundary 
conditions at tube ends will also be taken care of, as part of our case studies. Our present analysis 
assumes constant temperature within the tube. 

 
 
1. Introduction 
 
            The present work focuses on the acoustic behaviour of tubes with internal blockage. A spe-
cial parameter called ‘blockage integral’ is going to be introduced to quantify the effect of the 
blockage inside the tube. The idea behind the blockage integral is to represent the physical blockage 
as an acoustic lumped mass. Thus the analysis is applicable to low frequencies alone. The idea of 
the blockage integral has been adopted from the earlier work of Heckl and Howe1, where a stability 
analysis for the Rijke tube has been performed with a Green’s function approach. The works of 
Murray and Heckl2 as well as Murray and Howe3 deal with the Green’s function model of rectangu-
lar tube and generic Rijke burner. They included the concept of effective length of blockage in their 
work. Previous works from Flohr et al4, 5 dealt with CFD analysis of premixed flames and gas tur-
bine burner transfer functions. The idea of effective length of blockage has been observed there, as 
well. However, a detailed analysis of modal frequencies for a tube with blockage using the concept 
of blockage integral has never been done before. Moreover, in this piece of work, the variation of 
modal frequencies with tube blockage and area jump is going to be examined in detail. At the final 
stage, we are going to have a look at the pressure profile within the system and try to understand the 
reason of the tube system response with respect to change in area jump or blockage value.  
 

2. Mathematical model 
 

           We begin with a generalised model of a tube with area jump and blockage inside. A schemat-
ic representation is shown in fig 1. The tube has got an area jump from 1S to  2S at 1x x , and a 

blockage at 2x x . 
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Fig 1: Schematic of a tube with area jump and blockage inside 

 
In order to model this mathematically, we divide the tube into three distinct zones (see figure 1) and 
assume 1-D acoustic waves in each zone. The pressure and velocity are written in terms of the 6 
undetermined amplitudes 1A , 2A , 3A  (forward travelling waves) and 1B , 2B , 3B (backward travelling 

waves). 

 1 1 1, ( )jkx jkx j tp x t Ae B e e  
, 

 1 1 1, (1/ )( )jkx jkx j tu x t c Ae B e e             for 10 x x 
                    

(1) 

 2 2 2, ( )jkx jkx j tp x t A e B e e  
, 

 2 2 2, (1/ )( )jkx jkx j tu x t c A e B e e          for 1 2x x x 
        

          (2) 

 3 3 3, ( )jkx jkx j tp x t A e B e e  
, 

 3 3 3, (1/ )( )jkx jkx j tu x t c A e B e e           for 2x x L            
          

(3)
 

 is the density, c  is the speed of sound and k  is the wave number (= c ). 
At the interfaces between the three zones, we assume conservation of mass and momentum 
At

 1x x           1 2, ,p x t p x t  and 

                            1 1 2 2, ,S u x t S u x t
                                                                                                     

(4) 

At 2x x           2 3 2 2, , ( , ) /effp x t p x t L u x t t      and 

                            2 3, ,u x t u x t                                                                                                                                  (5) 

The concept of effL  will be discussed in the section 4 in more detail. 
We assume that the tube ends are open and can be described by pressure release boundary condi-
tions, 

 1 , 0p x t  , at 0x                                                                                                                           (6) 

 3 , 0p x t  , at x L                                                                                                                          (7) 

3. Calculation of eigen-frequencies 
 

           To calculate the eigen-frequencies, we use equations (1)-(7). These can be written as a ma-
trix equation, 
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(8) 

The characteristic equation is obtained by equating
 
the determinant of the above 6 6  matrix to 

zero. It has the form ( ) 0f k  , where 

         
1 1 1 1 2 1 2 1 1 1 2( ) sin ( )cos sin cos ( ) cos ( ) cos cos ( ) sin sin ( )efff k k L x kx S kx k L x L k k L x kx k x x S kx k x x             

(9) 

2 1S S S is the ratio of the cross sectional areas 

The special cases of this model are; 
i. there is no area jump or,  
ii. the blockage location and area jump location coincide.

 
 

The characteristic equation has to be solved numerically, e.g. by using the Newton-Raphson meth-
od, to determine the allowed values of ‘ k ’or ‘ ’. 

4. Concept of effective length of blockage (blockage integral) 

            To understand the idea of blockage integral, we turn to fig 2, which shows the streamlines of 
a hypothetical potential flow inside a tube with blockage.  

 
Fig 2: Different flow regions within a tube with blockage  

             As shown in fig 2, we divide the tube into three regions, such that the regions on either side 
of the blockage have a 1-D flow, with normalised velocity * 1u  , and corresponding velocity poten-
tial * . 

For 1x x : * 1u  , *( )x x                                                                                        (10) 

For 2x x : * 1u  , *( )x x C                                                                             (11) 

            We now show that the integration constant ‘C’ is identical with the effective length effL in eq 

(5), which can be written in terms of the velocity potential   (using p t     ): 

                                                         
1 2 1

effx x x
L u                                                                   (12) 

Applying this to the potential flow shown in fig 2, we get 
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2 1

* *
effx x

L                                                                    (13) 

The following expression for effL can be derived using matched asymptotic expansion 1, 

 *( / ) 1effL x dx




                                                                                                          (14) 

For numerical  purposes, this is rewritten in terms of the stream function * , which is related to 
* by (Cartesian coordinates). 

* *x y                                                                                                                         (15) 

Also the integrand in (14) is zero for 1x x and 2x x , so only a finite integration range is required. 

 
2

1

*( / ) 1
x

e

x

ffL y dx                                                                                                          (16) 

The numerical calculation is done in two steps. First, the field *( , )x y  is calculated by solving its 
governing equation, 

2 2 2 2* */ / 0x y                                                                                                            (17) 
          subject to the boundary condition that the normal velocity is zero on all the internal surfaces. 
A finite difference scheme, combined with a relaxation method, is used to solve (17) (see Press et 
al. section 17.5)6. In the second step, the streamlines are visualised and the integral in (16) is calcu-
lated with Simpson’s 1/3rd integration rule. 

The significance of blockage integral is that it simulates the 3-D hydrodynamic region around 
the blockage with a lumped inertia of infinitesimal extent located on a single hypothetical plane. 
Hence, our modified tube looks like fig 3.  The tube has two acoustic regions upstream and down-
stream of the blockage. 

 
Fig 3: Representation of the blockage by a lumped inertia a single hypothetical plane 

 
5. Blockage integral evaluation: two case studies 

           We are going to evaluate the stream functions for two special combustor models, one with 
high blockage and another with a low blockage. The schematic of the combustors are given below 

  
           Fig 4a: Combustor with low blockage                  Fig 4b:  Combustor with high blockage 
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The streamlines for the two combustors are shown in fig 5, 

 
 

Fig 5: Streamlines for combustor with low and high blockage 
 

The blockage integral calculated for the two combustor models are 0.115 m and 0.239 m respective-
ly, using equation (14). Thus the blockage integral is a representative of the physical blockage with-
in a tube.  

6. Results showing the influence of blockage and area jump 

6.1     Pressure profile within tube 
 
           In this subsection, we are going to demonstrate the acoustic pressure and velocity profile 
within the tube with blockage and area jump. Figure (6) and (7) represent sample plots of the acous-
tic pressure and particle velocity within the tube. In figure 6, the blockage is situated at 2 4x L , 

and in figure 7 at 2 2x L (halfway along the tube). Comparison of the two figures shows that the 

effect of the blockage depends on its location along the tube axis. In figure 6, its location is between 
a pressure node ( 0x  ) and a pressure antinode ( 2x L ). It causes the pressure jump, which ap-
pears in this figure. In figure 7, the blockage sits at a pressure maximum, and there it has no effect. 

        
 

Fig 6: Pressure and velocity profile within tube for mode 1 at 2x =0.25L 
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Fig 7: Pressure and velocity profile within tube for mode 1 at 2x =0.50L 

6.2 Effect of blockage integral on modal frequency 

  In this section we assume that there is no jump in the cross sectional area. The data assumed 
to generate the plots are as follows, L =1m, effL =0.2m,  =1.225 kg/m3, c =340 m/s. 

  Figures (8) and (9) show how the frequency of the first two modes depends on the blockage 
integral. The results are shown for two different blockage locations: in figure 8, the blockage is at 

0.1 0.1x m L  , and in figure 9 it is at 0.25 0.25x m L  . At each position, the blockage integral 
is varied from 0 m to 0.45 m. The trend of the plots is clearly visible to be decreasing for most of 
the cases. However, this trend is not visible for mode 2 in fig 9. At this position, the frequency of 
mode 2 is constant with respect to blockage. 

  Therefore, we can see that the modal frequency may go down or remain constant with re-
spect to the blockage integral. The possible reason could be that the blockage integral represents 
similar effect of acoustic inertia and thus, as inertia increases the modal frequency decreases. How-
ever, at pressure antinodes, the acoustic particle velocity is 0. Therefore, from equation (5), we can 
say that pressure does not face any jump at 2x x and the blockage is ineffective at 2x x . Hence, 

the modal frequency remains same as that of the case of a tube without any blockage at all. 
 

    
      Fig 8: Blockage location, 2x =0.10L               Fig 9: Blockage location, 2x =0.25L 
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6.3      Effect of area jump on modal frequency 
 

            In this subsection, we are going to consider the change of modal frequency with respect to 
area jump. This subsection is based on the following assumptions, 
 
1. Effect of blockage is neglected 
2. Area jump is a step jump and not gradual 

Figure (10) and (11) show how the modal frequencies depend on the size of the area jump. 
The ratio of cross-sectional area is varied between 0.25 and 2.5. The results are shown for two dif-
ferent jump locations: 1 0.1x L  (fig 10) and 1 0.35x L  (fig 11). From fig (10), we can see that the 

frequencies of both mode 1 and mode 2 are decreasing. The situation is different in fig 11, where 
the frequency of mode 1 decreases with the area ratio, while that of mode 2 increases. It has been 
also observed that at x=0.25m the frequency of mode 2 remains constant and at x=0.5m, the fre-
quency of both mode 1 and mode 2 remains constant. In summary, the modal frequency may go up 
or down with respect to area jump, depending on the location of the jump within the tube. A detail 
study of this feature and its possible explanation will be provided in the following paragraph. 

Fig 12 represents the pressure profile of mode 1 within the tube. It also explains that with re-
spect to increased area jump the modal frequency decreases in the first half of the tube. In the se-
cond half of the tube, an increase in area jump leads to an increase in modal frequency. However, 
exactly at the tube centre, where mode 1 has a pressure antinode, the area jump does not alter the 
modal frequency. At the pressure antinode, particle velocity is zero. Therefore, equation (4) sug-
gests that no matter what is the value of  2 1S S , the continuity equation is always satisfied and the 

modal frequency, thus, remains unchanged. 
 

 
             Fig 10: Area jump location, 1x =0.10L               Fig 11: Area jump location, 1x =0.35L 

 
Fig 12: Effect of area jump on first mode (Boundary condition open-open) 
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7. Summary and outlook 

  The current work modelled the blockage and area jump within a tube, using the concept of 
the blockage integral. The modal frequency of the system was evaluated and the following features 
were identified: 

 
1. The modal frequency decreases with increasing blockage size at all the locations in the tube 

except at a pressure antinode, where the modal frequency remains constant 

2. The modal frequency may increase or decrease with respect to area jump depending on the lo-
cation of the area jump within the tube. In zones of increasing pressure the modal frequency in-
creases. The reverse trend is observed in zones of decreasing pressure. At a pressure antinode, 
the modal frequency remains constant. 

       The modal frequency analysis of the system using the concept of the blockage integral gives us 
a clear idea about how the blockage affects the acoustic field and modal frequency of a tube. This 
exercise could be extended for a case where there is a temperature jump in the tube. Further, the 
combined effect of blockage and area jump, at the same location within tube, can also be treated. As 
of now, we have not done any computational/experimental verification of our results. Thus the 
scope of future work includes verification of the results, as well. 
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