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In linear acoustics, the acoustic scattering properties across a compact heat source are de-
scribed by the well-known Rankine-Hugoniot equations. These equations relate the down-
stream fluctuations of pressure and velocity to upstream perturbations and fluctuations of the
heat release. However, if the heat source considered is a moving premixed flame, the Rankine-
Hugoniot equations can give seemingly contradictory results. The overall objective of this pa-
per is to shed light on the apparent inconsistencies which may arise from the Rankine-Hugoniot
relations in the case of moving premixed flames, by analyzing the influence of the flame front
movement with respect to acoustic and entropy waves propagation across the discontinuity.
In addition, two limit-cases are examined: the first case consists in a fluctuating flame front,
which is purely convected by upstream velocity fluctuations; the latter is a perfectly fixed
flame front. Finally, accounting for the two limit cases, the validity of the Rankine-Hugoniot
equations is discussed.

1. Introduction

The modeling of acoustic scattering properties of a heat source is a fundamental step in the
study of every thermoacoustic system. The interaction between a thin flame front and acoustic distur-
bances was first analyzed by Chu [1]. In his analysis, Chu not only tried to analytically quantify the
amplification of acoustic disturbances across the flame, but also gave insight on the relation between
the flame front movement and acoustics. In the linear regime, the Rankine-Hugoniot relations are a
widely employed analytical model to assess results from simulations and experiments [10] [3]. These
equations are derived from the linearized conservation equations for fluctuating mass, momentum and
energy across the heat source. However, the Rankine-Hugoniot relations do not take explicitly into
account any information concerning the unsteady position of the heat source. The objective of this
paper is to investigate the influence of the dynamics of the heat source on the overall system acoustics,
and to assess the validity of the Rankine-Hugoniot equations.
For this purpose, a set of equations describing the conservation of mass, momentum and energy across
a temperature discontinuity is derived (Section 3); then, the influence of the heat source movement
is analyzed with respect to entropy and acoustic waves (Section 4); next, a model for a quasi 1-
dimensional premixed flame is taken into account as source term (Section 5); finally, with reference
to the case of premixed flame, the case of a fluctuating flame front is compared against the case of a
fixed flame front (Section 6).
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2. Apparent contradictions in Rankine-Hugoniot relations

The Rankine-Hugoniot relations consist of a system of two equations (see derivation in [3]):

u′2 = u′1 + ū1

(
T̄2

T̄1

− 1

)(
Q̇′

¯̇Q
− p′1
p̄1

)
+O(M2) (1)

p′2 = p′1 +O(M2) (2)

The subscript ’1’ denotes variables upstream and ’2’ denotes quantities downstream the heat source.
The downstream acoustic quantities are related to the upstream fluctuations through mean flow quanti-
ties (T̄1, T̄2, ū1) and heat release fluctuations (Q̇′). Now, considering the case in which the heat release
of the source is constant (Q̇′ = 0), and pointing out the fact that the pressure fluctuations (p′1/p̄1) are
negligible with respect to velocity fluctuations, the system reduces simply to:

u′2 = u′1 (3)
p′2 = p′1 (4)

This solution seems to contradict the fluctuating mass conservation equation:

ρ′2
ρ2

+
u′2
u2

=
ρ′1
ρ1

+
u′1
u1

, (5)

which suggests that downstream velocity fluctuations should be higher than upstream1, as a result of
the temperature and density discontinuity.
However, the result u′1 = u′2 suggests that the discontinuity is being ’convected’ by the upstream
velocity fluctuations u′1. In fact, the fluid particle, which is accelerated by the fluctuations in upstream
velocity, cannot penetrate the discontinuity, in case the latter is accelerated to the same extent, as an
effect of u′1. Therefore, the velocity fluctuation u′1 associated to the flow particle cannot undergo any
amplification, and the discontinuity can be regarded as an impermeable moving membrane between
the cold mixture and the hot burnt gases. In view of these considerations, a formalism which ac-
counts for the movement of the heat source is needed, so as to assess the influence of the heat source
movement on the system acoustics.

3. Conservation equations across a moving heat source

3.1 Derivation

The Rankine-Hugoniot equations in thermoacoustics are essentially conservation equations ex-
pressed in integral form. The relations describe discontinuities over infinitesimally thin surfaces, such
as flame fronts or shock waves, for which the integration volume tends to zero. Across a shock wave
propagating with velocity us, the Rankine-Hugoniot jump condition for an arbitrary flux function
f(φ) is expressed as [6]:

us (φ2 − φ1) = f(φ)2 − f(φ)1, (6)

In 1-D thermoacoustic systems, the governing equations for acoustics are the non-homogeneous Euler
equations, in which viscous effects and gravity are neglected:

∂φ

∂t
+
∂f(φ)

∂x
= S, (7)

where φ, f(φ) and the source term vector S are of the form:
1the density fluctuations are negligible with respect to the velocity fluctuations
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φ =

 ρ
ρu
ρE

 f(φ) =

 ρu
ρu2 + p
u(E + p)

 S =

 0
0
q̇

 . (8)

The non-homogeneity is determined by the presence of the heat source in the energy equation. For an
ideal gas, the total specific energy and enthalpy of the fluid are expressed as:

E = e+
1

2
u2, (9)

H = h+
1

2
u2 = E +

p

ρ
, (10)

e = cvT =
p

(γ − 1)ρ
, (11)

where γ = cp/cv.
Applying the jump condition (6) to the Euler equations (7), the conservation equations for mass,
momentum and energy are given as follows:

us(ρ2 − ρ1) = ρ2u2 − ρ1u1, (12)
us(ρ2u2 − ρ1u1) = ρ2u

2
2 − ρ1u

2
1 + p2 − p1, (13)

us(ρ2E2 − ρ1E1) = ρ2u2H2 − ρ1u1H1 − Q̇, (14)

where Q̇ =
∫ 2

1
q̇dx. Considering the eqs. (9), the energy and enthalpy of the flow can be rewritten in

terms of u, p and ρ. In addition, under the hypothesis of constant specific heats, cp1 = cp2, cv1 = cv2

the energy equation reduces to:

us

(
p2

γ − 1
− p1

γ − 1
+

1

2
ρ2u

2
2 −

1

2
ρ1u

2
1

)
=

γ

γ − 1
u2p2 −

γ

γ − 1
u1p1 +

1

2
ρ2u

3
2 −

1

2
ρ1u

3
1 − Q̇. (15)

3.2 Linearization

Acoustics pertain to the small perturbations to a steady base flow. Therefore, in order to focus
on acoustic conservation equations, all variables (u, p, ρ, us) are decomposed into a mean part, which
is constant in time but spatially varying, and a fluctuating component, which is varying both in time
and space:

u(x, t) = ū(x) + u′(x, t). (16)

The decomposition for the heat source speed is:

us(x, t) = 0 + u′s(x, t). (17)

In the lab reference frame, the heat source oscillates around a fixed mean position. Thus, its mean
velocity equals zero, while its oscillation is represented by u′s. After linearization and retaining only
first order fluctuating terms, the linear conservation equations for fluctuating quantities are obtained.
Since the flow regimes of interest are all in low-Mach number range, only terms up to 1st order in
Mach number are retained in the derivation. Omitting algebraic manipulations, the equations reduce
to:
Mass:

ρ′2u2 − ρ′1u1 + ρ2u
′
2 − ρ1u

′
1 = (ρ2 − ρ1)u′s, (18)

Momentum:
p′2 = p′1, (19)
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Energy:
γ

γ − 1
(p′2u2 − p′1u1 + p2u

′
2 − p1u

′
1) = Q̇′. (20)

The linearized equation of state for perfect gas was taken into account during the derivation:

p′ = ρ′RT + ρRT ′ (21)

It is interesting to underline the fact that, by neglecting terms of higher order in Mach number, the
momentum equation simply reduces to: p̄1 = p̄2 (see [1]) and upstream pressure fluctuation can be
considered equal to the pressure fluctuation downstream. As a consequence of this, terms depend-
ing on the heat source movement (u′s) vanish from the energy equation. Therefore, only the mass
conservation equation is influenced by the movement of the heat source.

3.3 Normalized equations

In order to simplify the analysis, the eqs. (18) to (20) are non-dimensionalized by mean flow
quantities. The normalized equations relate the upstream and downstream quantities only through
λ = T̄2/T̄1.
Mass:

ρ′2
ρ̄2

− ρ′1
ρ̄1

+
u′2
ū2

− u′1
ū1

=
u′s
ū1

(
1

λ
− 1

)
(22)

Momentum:
p′1
p̄1

=
p′2
p̄2

(23)

Energy:
Q̇′

˙̄Q
=
p′1
p̄1

+
u′2
ū2

(
λ

λ− 1

)
− u′1
ū1

(
1

λ− 1

)
(24)

The normalized conservation equations were derived considering the normalized equation of state for
perfect gases:

ρ′2
ρ̄2

+
T ′

2

T̄2

=
ρ′1
ρ̄1

+
T ′

1

T̄1

(25)

Equations (22) to (24) were first derived by Chu [1] and later by Schuermans [4]. Both employed
these equations in premixed flame front modeling. However, the set of acoustic equations above can
be used to describe any discontinuity in which heat transfer in involved. This is possible, provided
that the extension of the heat source is much smaller than the acoustic wavelength (i.e. hypothesis
of compactness is verified) and the heat release fluctuation is expressed in the integral form (Q̇′),
with a ’black-box’ approach. Here, this formalism will be used to address the apparent inconsistency
expressed by eq. (3), by shedding light on the relation amongst acoustics, heat release fluctuations
and motion of the heat source.

4. Scattering and generation of acoustic and entropy waves

The equations (22) - (24) are a system of 3 equations in 3 unknowns. These unknowns consist
of: acoustic fluctuations (u′2/ū2, p

′
2/p̄2) and fluctuations of density ρ′2/ρ̄2. Since density fluctuations

are a function of both pressure and entropy oscillations [8], it is convenient to replace density with
entropy fluctuations:

ρ′

ρ̄
=

p′

γp̄
− s′

cp
, (26)
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so as to segregate the interplay between entropy and acoustic waves across the discontinuity. The
solution of the system is:

u′2
ū2
p′2
p̄2
s′2
cp

 =


1
λ

(
1
λ − 1

)
0

0 1 0(
1
λ − 1

) (
1
λ − 1

)
1


︸ ︷︷ ︸

M


u′1
ū1
p′1
p̄1
s′1
cp

+


(
1− 1

λ

)
0(

1− 1
λ

)


︸ ︷︷ ︸
N

·Q̇
′

¯̇Q
+

 0

0(
1− 1

λ

)


︸ ︷︷ ︸
U

·u
′
s

ū1

(27)
A matrix form is used, in order to highlight the contribution of every variable to the overall flow os-
cillations. The matrix M contains the correlations between upstream and downstream acoustic and
entropy oscillations; matrix N expresses the contribution of the heat release fluctuations to the down-
stream oscillations, while matrix U expresses the influence of the heat source movement.
The terms M11, M12, M21, M22 represent the acoustic matrix, since they express the relation between
upstream and downstream acoustic quantities exclusively. The terms M31 and M32 express the part
of entropy fluctuations related to acoustics. Terms M13 and M23, conversely, express the contribution
of entropy oscillations to acoustics. However, the latter terms equal zero. Consequently, across a dis-
continuity, acoustics waves propagation is independent of entropy waves, while entropy fluctuations
are strictly related to pressure and velocity oscillations. The term M33 suggests that incoming entropy
fluctuations are merely convected through the discontinuity, without any amplification.
The derivation up to 1st order in Mach number leads to the identity between upstream and down-
stream mean and fluctuating pressures. This is shown by the independence of pressure oscillations of
both Q̇′ and u′s. On the other hand, the heat release fluctuations influence the velocity and entropy
fluctuations to the same extent.
Looking at vector U , there seems to be no influence of the heat source movement on the acoustics
downstream. In fact, the velocity fluctuations of the heat source seems to be influencing only the
entropy fluctuations downstream. However, before drawing conclusions on the overall influence of
the heat source movement on the acoustics, it is necessary to solve the ’closure problem’, by relating
the heat release fluctuations Q̇′ to upstream fluctuations.

5. Quasi 1-D modeling of a perfectly premixed flame

In the present analysis, a ducted, perfectly premixed flame will be taken into account as heat
source (see fig.1). The heat release per unit of flame area for a premixed flame is:

Q̇ = SfAfρ1φq (28)

where Sf is the mean flame front speed, averaged on the flame surface, Af (t) is the flame area, q is
the mass specific enthalpy of the fuel and φ is the equivalence ratio of the mixture. Here, q and φ are
considered constant, since the flame under analysis is perfectly premixed.
In the steady case, the total mass flow upstream equals the mass being burnt by the flame front. At

the flame front, continuity imposes:
u1Ad = SfAf (29)

where Ad is the area of the duct section. Whilst Ad is constant, the flame area change as an effect
of flame stretching and wrinkling, contributing to the mass burning rate of the flame front. In quasi
1-dimensional modeling, the effects of flame area change (A′

f ) and flame speed fluctuations(S ′
f ) are

taken into account in one variable: S ′
FB, also called ’flame brush’ speed. Given (28), the normalized

heat release fluctuations is expressed as:

Q̇′

¯̇Q
=
S ′
f

S̄f

+
A′

f

Āf

+
ρ′1
ρ̄1

=
S ′
FB

S̄FB

+
ρ′1
ρ̄1

(30)
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Figure 1. Quasi 1-D moving flame front

According to Chu [1], the flame front movement with respect to the fixed frame of reference is given
by the so-called ’flame condition’:

u′s
ū1

=
u′1
ū1

− S ′
FB

S̄FB

(31)

where S̄FB = ū1. Eq. (31) states that the movement of the flame front in a premixed flame is non-
zero when the perturbations of u1 and SFB are not equal. So, considering eq. (31) and (26), the heat
release fluctuation of a perfectly premixed flame can be expressed as:

Q̇′

¯̇Q
=
u′1
ū1

− u′s
ū1

+
1

γ

p′1
p̄1

− s′1
cp

(32)

Replacing Q̇′

¯̇Q
in eq. (33) with eq. (32), the resulting system matrix reduces to:


u′2
ū2
p′2
p̄2
s′2
cp

 =


1
(

1− 1
γ

) (
1
λ − 1

)
1
λ − 1

0 1 0

0
(

1− 1
γ

) (
1
λ − 1

)
1
λ


︸ ︷︷ ︸

M


u′1
ū1
p′1
p̄1
s′1
cp

+


1
λ − 1

0

0


︸ ︷︷ ︸

U

·u
′
s

ū1 (33)

From the system matrix above, it clearly results that the flame front movement influences the acoustics
of the system (see vector U ). However, the influence is indirect, because the effects of the flame front
movement impact on the system through the heat release fluctuations. As a consequence of this,
the heat release fluctuations modeling becomes of crucial importance in characterizing the scattering
properties of thermoacoustic systems, not only because it relates Q̇′ to upstream perturbations, but
also because it clarifies the relation between Q̇′ and the motion of the heat source itself.

6. Analysis of limit cases

In this section, two limit-cases are analyzed, in order to clarify the effects of the flame front
movement on velocity fluctuations. The solutions for downstream pressure and entropy will not be
evaluated, since in the case of a premixed flame those quantities are not influenced by the flame front
movement.

6.1 Moving flame front acoustics

The first limit case considers the hypothesis in which the flame front movement equals the
upstream velocity perturbations (u

′
1

ū1
= u′

s

ū1
). According to eq. (32), the flame model reduces to:(

Q̇′

¯̇Q

)
moving

=

(
1

γ

p′1
p̄1

)
−
(
s′1
cp

)
(34)
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it follows from eq. (33) that the solution for downstream velocity fluctuations is:

u′2
ū2

=
u′1
ū1

1

λ
+
p′1
p̄1

(
1− 1

γ

)(
1

λ
− 1

)
+
s′1
cp

(
1

λ
− 1

)
(35)

The solution (35) shows that u′
2

ū2
is influenced by both acoustic and entropy perturbations. As a matter

of fact, the impact of p′1
p̄1

and s′1
cp

is much smaller than the contribution of velocity perturbations. Some
considerations on the order of magnitude yield [9]:

p′

p̄
= O

(
γM̄

) u′
ū

p′

p̄
∼ O

(
ρ′

ρ̄

)
(36)

For low-Mach number flow regimes, the normalized pressure fluctuations are much smaller than
than the velocity fluctuations. Moreover, considering that fact that in acoustic waves the pressure
oscillations are of the same order of magnitude as density fluctuations, and also considering eq. (26),
it seems reasonable to neglect the contribution from pressure and entropy in eq. (35). The downstream
velocity is therefore:

u′2 = u′1 (37)

The result in eq. (37) can be explained by the fact that, in the case considered, the flame front
movement u′

s

ū1
counterbalances perfectly u′

1

ū1
, so that the flame sheet is merely convected back and forth

by the velocity perturbations.

6.2 Fixed flame front acoustics

The second limit-case deals with the hypothesis of a fixed flame front, i. e. u′s = 0. According
to eq. (32), the flame model is in this case:

Q̇′

¯̇Q
=
u′1
ū1

+
1

γ

p′1
p̄1

− s′1
cp

(38)

making the same considerations as in eqs. (36), the flame model reduces to:

Q̇′

¯̇Q
=
u′1
ū1

(39)

which states that, for a fixed perfectly premixed flame, the normalized heat release fluctuation is
mainly a function of the upstream velocity perturbation. With reference to eq. (33), the solution for
downstream velocity fluctuations is:

u′2 = u′1
T̄2

T̄1

(40)

This is the solution expected if the ’naive’ continuity equation were applied. In fact, the velocity
fluctuations downstream exceed those upstream as an effect of the temperature jump. For the flame to
be fixed, according to eq. (31), the flame brush speed should compensate the fluctuations of upstream
velocity.

7. Conclusions

In the present work, some apparent contradictions arising from the Rankine-Hugoniot relations
in the case of a moving heat source are considered. In order to address these inconsistencies, mass,
momentum and energy conservation equations are derived for flow disturbances across a moving dis-
continuity. The results show a direct influence of the source movement on entropy waves downstream
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the discontinuity (see eq. (27)), and an indirect influence on acoustics, through heat release rate Q̇′

(see eq. (32)). With reference to the quasi 1-D perfectly premixed flame model, two limit cases are
taken into account, so as to highlight the differences in downstream acoustics between a moving and a
fixed flame, ceteris paribus. The comparison shows that velocity fluctuations downstream are heavily
influenced by the flame front movement, and that apparently not reasonable results (as u′1 = u′2) can
be explained by considering the unsteady position of the flame front.
Finally, by analyzing the solution in matrix (33), it is possible to state that the Rankine-Hugoniot rela-
tions describe the acoustics across heat sources correctly, provided that the conservation equations are
developed up to 1st order in Mach number. In addition, both upstream perturbation and heat source
dynamics have to be taken into account in the identification of the heat release fluctuations Q̇′.
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