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Combustion systems are often integrated with heat exchangers to increase their efficiency and
prolonged use. The thermo-acoustic instabilities in combustion systems had been the subject
of research for over two decades. These instabilities occur due to the existence of feedback
between the unsteady heat release rate and acoustic oscillations. The aim of this paper is to
study how a tube row simulating a heat exchanger affects the stability behaviour. The setup is
modelled as a Rijke tube. The upstream end is open and the downstream end is a row of tubes
backed by a cavity. The speed of sound is assumed to be constant throughout the duct. The
reflection coefficient of the downstream end of the duct depends on the cavity length, tube row
properties and the resonant frequency of the system. The resonant frequency of the system
is evaluated from the characteristic equation, developed from the boundary conditions at the
tube ends and the heat source. The acoustic waves are assumed to be one-dimensional, with
the heat source obeying the n-τ model for heat release rate. The parameters of interest in this
study are: cavity length (lc) and the radius of the heat exchanger tubes (a). Stability maps
involving the growth rate of the acoustic oscillations in the system show the unstable/stable
behaviour of the combustion system.

1. Introduction

Heat exchangers are widely used in internal combustion engines, refrigeration and air condition-
ing units, power plants etc., for effectively cooling the systems. These exchangers could be rows of
cylindrical shells with a coolant fluid circulating through them. Hence, they bring about a periodicity
in the structure and may exhibit resonance when acoustic waves are incident on them.

Combustion systems are often marred by the presence of thermo-acoustic instabilities. These
instabilities occur as a result of the positive feedback existing between the unsteady heat release rate
and acoustic pressure oscillations. Presently, the combustion system is modelled as a Rijke tube,
which has inherent self-sustained and self-excited thermo-acoustic oscillations. The aim of this paper
is to study the influence of a single tube row (heat exchanger) on the stability of the Rijke tube.

Previous studies have shown that tube bundles/banks scatter sound and in some cases may even
absorb sound1–4, depending on the tube row properties as well as the frequency of the incident wave.
Howe5 and Hughes and Dowling6;7 have shown that perforated plates backed by a cavity, when placed
at the inlet of a duct, effectively absorbed acoustic oscillations, thereby making the system stable. This
was experimentally verified by Tran et. al.8. Stability predictions and analysis of Tran’s combustor
were carried out by Heckl and Kosztin9. Heckl10 has experimentally shown that introduction of a
feedback system in a Rijke tube can actively control the noise from the tube. The crux was to change
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the reflection coefficient at the downstream end of the tube. An approach similar to Heckl’s is adopted
in the present study. The authors have tried to study the stability of the Rijke tube by introducing a
tube row backed by cavity at the downstream end. It is expected that this arrangement will change the
reflection coefficient of the downstream end.

2. Model of the combustion chamber with heat exchanger

The combustion chamber is modelled as a Rijke tube. The heat exchanger is simulated using
a row of thin walled tubes, backed by a tuneable cavity, as shown in Fig. 1. The upstream end is at
x = 0, and the downstream end is at x = L. The tube row, backed by the cavity, is located at the
downstream end, and the heat source is located at a distance lh from the upstream end of the duct.
The length of the cavity is denoted by lc. The acoustic waves are assumed to be one–dimensional and
the speed of sound inside the duct is considered to be uniform. The tube row is perpendicular to the
wall of the Rijke tube.

2.1 Tube row

The individual tubes constituting the tube row are assumed to be thin-walled and follow the
equations of motion given in section 7.12 of Junger and Feit11. The tubes have radius a and thickness
h. They are surrounded by an “outer” fluid and are filled with an “inner” fluid which are denoted
by the subscripts ‘o’ and ‘i’ respectively. A one-dimensional array of such tubes, spaced by distance
d, forms the tube row which simulates the heat exchanger (Fig. 2). We have followed the work of
Huang and Heckl3 to obtain the reflection and transmission coefficients of the tube row. They have
applied the theory of diffraction grating, initially proposed and described by Twersky12, to obtain
these coefficients. The reader is advised to refer to their work for details, as we have provided only
the final expressions for the reflection and transmission coefficients derived by them. The transmission
and reflection coefficients for a single tube row are:

Tt = 1 +
2

kod

1

cosϕo

∞∑
n=−∞

An einϕo (1)

Rt =
2

kod

1

cosϕo

∞∑
n=−∞

An ein(π−ϕo) (2)

where ko is the wavenumber in the outer fluid, An = an
(
e−inϕo +

∑∞
m=−∞ Am Fn−m

)
and Fn−m is

the Schlömilch series which depends on the angle of incidence ϕo, tube spacing d and wavelength in
the outer fluid λo. an is the scattering coefficient of an individual tube within the tube row.

Figs. 3 and 4 show the transmission and reflection coefficients of a tube row, calculated using
Eq. (1) and Eq. (2), for ϕo = 0 and two different values of the tube radius a: 0.01m and 0.015m.
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Figure 1: Schematic of the combustion chamber with
heat exchanger.
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Figure 2: Geometry of the tube row.
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Figure 3: |Tt| and |Rt| for a tube row with a = 0.01m, d = 0.045m and h = 0.001m.
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Figure 4: |Tt| and |Rt| for a tube row with a = 0.015m, d = 0.045m and h = 0.001m.

The peaks in Figs. 3 and 4 are due to resonance of the individual tubes. We observe that the
resonance frequencies are higher for radius a = 0.01m than for a = 0.015m. This is plausible because,
given that the wall thickness and tube spacing are the same in the two figures, the tube with the larger
radius is “softer”.

2.2 Tube row backed by cavity

In this section, we derive the “combined reflection coefficient”, i.e., the reflection coefficient
of the tube row backed by a cavity, as shown in Fig. 5. The tube row is located at x = 0 with the
moveable piston at x = lc. The transmission (Tt) and reflection (Rt) coefficients of the tube row are
given by Eq. (1) and Eq. (2) respectively, and Rp is the reflection coefficient at the downstream end
of the cavity. The pressure and velocity field for the given configuration is obtained by superposing
the travelling waves upstream and downstream of the tube row.

( Rt , Tt ) ( Rp )

x = 0 x  = lc(+) (–)

Figure 5: Schematic of tube row with cavity

p̃(x) =

{
Ãeikx + B̃e−ikx x < 0

C̃eikx + D̃e−ikx lc < x < 0

}
(3)

ũ(x) =
1

ρoco

{
Ãeikx − B̃e−ikx x < 0

C̃eikx − D̃e−ikx lc < x < 0

}
(4)
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where ρo is the density and co is the speed of sound in the outer fluid. The factor of e−iωt is omitted in
the present analysis. Ã, B̃, C̃ and D̃ are the complex pressure amplitudes upstream and downstream
of the tube row. They have to be such that the following boundary conditions are satisfied:

At x = 0 :

{
C̃ = TtÃ+RtD̃

B̃ = TtD̃ +RtÃ
(5)

At x = lc : D̃e−iklc = RpC̃eiklc (6)

The combined reflection coefficient is given by the amplitude ratio B̃/Ã and this can be obtained from
Eq. (5) and Eq. (6). The result is:

Rcomb =
B̃

Ã
= Rt +

RpT
2
t e

2iklc

1−RpRte2iklc
· (7)

2.3 Heat release rate

The heat source is assumed to be a planar sheet that is confined to an infinitesimally thin region
at x = lh. The heat release rate follows the n–τ model, i.e., it depends on the velocity field existing at
lh ((u(x = lh)), but after a time lag τ .
In the time domain:

Q (x, t) = nu (x, t− τ) (8)

In the frequency domain:
Q (x,Ω) = nu (x) eiΩτ (9)

2.4 Rijke tube with heat exchanger

The Rijke tube is a straight duct with open ends, containing a heat source within. In the present
study, the downstream end of the duct is fitted with a tube row backed by cavity. This is shown in
Fig. 6. The pressure and velocity field for such a system is given by:

l
cR

O
R

L

x = 0 x = l
h

x = L

A C

B D1 2

Heat source

Back cavity

Figure 6: Schematic of the Rijke tube with heat exchanger.

Region 1:

p1(x) = Aeik(x−lh) +Be−ik(x−lh) 0 < x < lh (10)

u1(x) =
1

ρoco

{
Aeik(x−lh) −Be−ik(x−lh)

}
0 < x < lh (11)

Region 2:
p2(x) = Ceik(x−lh) +De−ik(x−lh) lh < x < L (12)

u2(x) =
1

ρoco

{
Ceik(x−lh) −De−ik(x−lh)

}
lh < x < L (13)

A, B, C and D are pressure amplitudes that are to be determined.
The heat release rate can be expressed with Eq. (9) as:

Q′ (x = lh) = neiΩτ (A−B)

ρoco
· (14)
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We assume the following boundary conditions:
At x = 0:

Ae−iklh = RoBeiklh (15)

At x = L:
De−ik(L−lh) = RLCeik(L−lh) (16)

At x = lh, we assume continuity of pressure,

A+B = C +D , (17)

and a velocity jump generated by the heat source

− (A−B) + (C −D) =
(γ − 1)

Sco
Q′ (lh) , (18)

where S is the area of cross section of the duct, Ro (open end) and RL (given by Eq. (7)) are the
reflection coefficients at x = 0 and x = L respectively, and γ is the ratio of the specific heat capacities.

3. Methodology

The stability of the Rijke tube is determined using the eigenvalue method.

3.1 Calculation of complex eigenvalues

Eqs. (15)–(18) can be written as a set of homogeneous equations for the unknowns A,B,C and
D.

[Y (Ω)] =


A
B
C
D

 =


0
0
0
0

 , (19)

with

Y (Ω) =


e−i Ω

co
lh −Roe

i Ω
co

lh 0 0

0 0 RLe
i Ω
co

(L−lh) −e−i Ω
co

(L−lh)

1 1 −1 −1
−1− βeiΩτ 1 + βeiΩτ 1 −1

 , (20)

where β = (n (γ − 1)) / (Sρoc
2
o) ·

The eigenvalues are the solutions of the characteristic equation

detY (Ω) = 0 , (21)

where

detY (Ω) =− 2e−i Ω
co

L + 2RoRLe
i Ω
co

L + βeiΩτ
(
−e−i Ω

co
L +RoRLe

i Ω
co

L+

Roe
−i Ω

co
(L−2lh) −RLe

i Ω
co

(L−2lh)
)
· (22)

3.2 Stability analysis

Ω is the complex eigenfrequency. It can be determined by solving Eq. (21) numerically, for
example, by the Newton - Raphson technique. The results are of the form

Ωn = ωn + iδn , (23)

where ωn is the natural frequency of the mode n and δn is the growth rate. Positive δn indicates
instability and negative δn indicates stability.
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4. Results and Discussion

4.1 Numerical values for various parameters used

Duct properties:
S = 0.01m2 (cross–sectional area of the duct)
L = 0.3m (length of the duct)
Heat source location lh ϵ [0, L]m
Cavity length lc ϵ [0, L/2]m
Tube row properties:
E = 2× 1011 N/m2 (Young’s modulus of steel)
σ = 0.3 (Poisson ratio)
cw = 5000 m/s (compressional wave speed on a

steel plate)
a = 0.01m and 0.015m (tube radius)
h = 0.001m (tube thickness)
d = 0.045m (tube spacing)

Inner fluid properties:
ci = 1460m/s (speed of sound in water)
ρi = 1000 kg/m3 (density of water)
γi = 10
Outer fluid properties:
co = 358m/s (speed of sound in air)
ρo = 1.21 kg/m3 (density of air)
γo = 1.4
Heat release rate model:
τ = 0.15× 10−3s (time - lag)
n = 187 kg m/s2

Downstream end conditions:
Rp = 1 (for termination by piston)
Rp = −1 (for open end)

4.2 Stability Maps

The stability analysis is conducted for two duct end conditions: open-open and open-closed.
Stability maps were produced by calculating the growth rate δn, for the first mode (n = 1). Stable
regions (δn < 0) are indicated by light regions and unstable regions (δn > 0) by dark regions, in the
figures below. The parameters of interest are lc (cavity length) and lh (heat source location).

Fig. 7 shows stability maps for the case where the tube row is absent. The results show the
expected behaviour of a Rijke tube: For open-open ends, the system is unstable when the heat source
is in the upstream half, and stable when the heat source is in the downstream half of the tube (see
Fig. 7(a)). The reduction of the stable region with increasing lc is due to the fact that the total length of
the duct, L+ lc, increases. For the open-closed situation, the Rijke tube is always unstable (Fig. 7(b)).
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Figure 7: Stability maps for the duct with no tube row and (a) Open-open end condition (b) Open-closed end
condition.

The range of frequencies is [2000 s−1,4000 s−1] for the open-open case, and [500 s−1,2000 s−1]
for the open-closed case. This means that the period of the oscillation is of the order 10−3s, i.e., the
time-lag τ is much less than that.
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We now assume the tube row to be present and determine the stability maps for two values of
the tube radius a, again for an open-open and open-closed duct. Fig. 8 shows the result for a = 0.01m.
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Figure 8: Stability map for a = 0.01m, d = 0.045m and h = 0.001m for (a) Open-open end condition and (b)
Open-closed end condition.

The stability maps are very similar to those for the “no tube row” case (see Fig. 7). Here, the
range of frequencies is [2000 s−1,4000 s−1] for the open-open case, and [1000 s−1,2000 s−1] for the
open-closed case.

For a = 0.015m, the picture is quite different, as can be seen from Fig. 9. The frequency range
is [2000 s−1,4000 s−1] for the open-open case, and [1500 s−1,3500 s−1] for the open-closed case.
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Figure 9: Stability map for a = 0.01m, d = 0.045m and h = 0.001m for (a) Open-open end condition and (b)
Open-closed end condition.

There is a marked change in the stability behaviour, both for the open-open and open-closed
case. The reason for this lies in the resonant behaviour of the heat exchanger tubes. For the stiff tubes
(a = 0.01m), the first resonance occurs at ω1 ≈ 8148 s−1 (Fig. 3), which is outside the frequency
range covered by mode 1 in the Rijke tube. For softer tubes (a = 0.015m), the first resonance is at
ω1 ≈ 3330 s−1(Fig. 4), and this clearly falls within the range of frequency values where the Rijke
tube (with tube row present) exhibits resonance for the different values of lc and lh. At the resonance
frequency of the tube row, the reflection coefficient will be minimal and the wave incident on the tube
row will be trapped within the cavity i.e.,diverted away from the heat source, thereby affecting the
stability of the system.
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5. Summary and Outlook

It was shown that introducing a tube row backed by cavity could alter the reflection coefficient
at the duct boundaries. However, to have an effect on the stability behaviour of the duct, the duct
resonating frequency and the tube row resonating frequency must match. In order to achieve this, the
radius of the tube in the tube row is varied. This could also be brought about by varying the tube
spacing or the thickness of the tube. Currently, work is being done in introducing dissipation methods
and base flow within the tube row to closely resemble real-life situations.
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