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A new model describing the coupling of heat driven modes in a Rijke tube is presented. The 
heat source is assumed to be compact and to have a linear heat release characteristic with a 
time lag. The equations for the eigenmodes are solved using a different number of Green 
function modes and the stability behavior of the system is analyzed. The Green function, 
which we derive for this configuration, is a superposition of modes with eigenfreqencies ωn 

and corresponding amplitudes. We use a Green function approach to derive the characteristic 
equation for the complex eigenfrequencies Ωm of the heat driven modes. This equation re-
veals which parameters are essential for the mode coupling. 

1. Introduction
An unsteady heat source within a duct can be a source of large amplitude oscillations of the 

acoustic field. These oscillations are the result of the superposition of the heat driven modes of the 
tube, which depend on the tube parameters and the heat source characteristics. In this paper we wish 
to take a step forward in the understanding of the nonlinear interaction between modes, and how 
this affects the stability of the system. 

We introduce a model for the coupling of the heat driven modes in the Rijke tube, using a 
Green function approach. The Rijke tube is a simplified model of a burner as shown in Fig. 1.

We assume the acoustic field in the tube to be one-dimensional . The tube has open ends, and these 
are modeled by the reflection coefficient of Levine and Schwinger1 
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Figure 1:  Rijke tube with a point source at  x =xq.
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for both ends, where a is the diameter of the tube, c is the speed of sound and δ=0.6133 represents 
the end correction. The heat source is compact and located at x =xq , so that the heat release rate can 
be written as

q(x , t )=q(t )δ (x−xq)                                                        (2)

q( x , t) is a local heat release rate (i.e. the heat release rate per unit mass) and has units of power 
per unit mass.

                      

2. The Green function approach 
A Green function approach can be used to calculate the acoustic velocity in the duct. The 

Green function is the velocity potential created in the tube at position x and time t by an impulsive 
point source located at x' and firing at time t'. It is obtained as the solution of the governing equation 

1
c2

∂2 G
∂ t2 − ∂G

∂ x2=δ(x−x ' )δ(t−t ' )                                                  (3)

with the boundary conditions described by the reflection coefficients R0 and RL. It is a superposition 
of acoustic modes of amplitudes gn and frequencies ωn 

G (x , x ' , t , t ' )=H (t−t ' )∑n=0

∞
ℑ [ gn(x , x ' )e−iω n( t−t ')] .                                  (4)

The modal amplitudes and frequencies can be calculated for different characteristics of the 
duct, such as a jump in the cross-sectional area2,  a blockage3,  or a temperature gradient4. For the 
case of a simple Rijke tube, with uniform temperature and constant cross-sectional area, ωn is given 
by the characteristic equation F (ω)=0  with 

F (ω)=i 2 ω
c
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The modal amplitudes gn are given by 
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Many mathematical steps are required to obtain results (5) and (6). These are not shown here; de-
tails about the derivation method can be found in Heckl5. The velocity potential, denoted here by 
Φ (x ,t ) , is governed by the acoustic analogy equation 

1
c2

∂2Φ
∂ t 2 −∂Φ

∂ x2 =− γ−1
c2 q (t )                                                      (7)
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An integral equation can be derived from Eq. (3) and Eq. (7) which gives the time history of the 
acoustic velocity as

u (xq , t )=∂Φ
∂ x ∣

x= xq

=− γ−1
c2 ∫

t '=0

t
∂G( x , x ' , t , t ' )

∂ x ∣ x= xq

x'= xq

q (t ' )dt '−
φ0

c2
∂G

∂ x∂ t '∣t '=0
x '=xq

+
φ0 '
c2

∂G
∂ x ∣t '=0

x'= xq

     (8) 

The integral term represents the response to “forcing” by the heat release rate. The last two terms 
are due to the initial conditions

∂Φ( x , t)
∂ t ∣

t=0
=φ0 ' δ (x−xq)   and  Φ (x , t )∣t=0=φ0δ (x− xq)  .                     (9) 

 
These represent an initial disturbance at the heat source, whose strength is given by the constants φ

0 

and φ0'. For details of the derivation see Heckl and Howe2. 

3. Frequency domain calculation of the acoustic velocity 

3.1 General method
We now investigate the coupling of the natural tube modes and how this affects the stability of 

the system. To this aim we represent the acoustic velocity as a superposition of heat driven modes, 
with complex modal amplitudes um and heat driven frequencies Ωm . 

u (t)=∑
m=1

∞

[um e−iΩmt+um
∗ eiΩm

∗ t ] ;                                                (10)

the superscript * denotes the complex conjugate.  
An acoustic mode n in the Rijke tube now has two distinctly different frequencies associated with it: 
ωn and Ωn . ωn  is the resonance frequency without fluctuating heat source and Ωn is that with fluctu-
ating heat source. ωn has an imaginary part that is always negative (due to dumping in the system), 
whereas Ωn  can have negative or positive imaginary part; a positive imaginary part indicates that 
mode n is unstable due to thermoacoustic feedback. 
We will now assume a linear heat release law:

q(t )=Κ ·u(t−τ )                                                                  (11)

where Κ is a coupling constant and τ is a time delay. Substituting Eqs. (4), (10) and (11) into Eq. (8) 
we get

∑
m=1

∞

[um e−iΩmt+um
∗eiΩm

∗ t ]= Β Κ2 ∫
t '=0

t

∑
n=1

∞

[Gn e−iωn(t−t ' )+G n
∗eiωn

∗( t−t ')]∑
m=1

∞

[um e−iΩm (t '−τ )+um
∗eiΩm

∗( t '−τ )] dt '

+ 1
2 c2 ∑

n=1

∞

[(φ0 '−φ0 iωn)Gn e−i ωn t+(φ0 '+φ0 iωn
∗)G n

∗ eiωn
∗ t ]

    (12)

where the abbreviation  

  Β=−
(γ−1)

c2                                                              (13)
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has been used , and Gn denotes the Green's function amplitude in terms of the velocity,

 Gn=i
∂ gn

∂ x
.                                                             (14)

From Eq. (12) it is possible to derive equations for the complex amplitudes um and frequencies Ωm. 
Details of the derivation can be found in Heckl and Howe2. Here we just summarize the results. 
The equation for  Ωm  is non-linear and has the form

∑
n=1

∞ Gn eiΩm τ

i (ωn−Ωm)
−

Gn
∗ eiΩm τ

i (ωn
∗+Ωm)

= 2
Κ Β

   m=1,2,3. ..                               (15)

This is a single equation for Ωm ; the frequencies of other heat driven modes do not appear in it. This 
make it relatively easy to solve Eq. (15). The amplitudes  um , and their complex conjugate um

* are 
given by the following set of linear equations,

∑
m=1

∞ um eiΩm τ

i (ωn−Ωm)
+

um
∗e−iΩm

∗ τ

i (ωn+Ωm
∗)

=
φ ' −iωφ0

Κ Βc2  and ∑
m=1

∞ um eiΩm τ

i (ωn
∗+Ωm)

+
um

∗ e−iΩm
∗ τ

i(ωn
∗−Ωm

∗)
=

−φ ' −iω∗ φ0

Κ Β c 2    (16)

We observe that Eq. (15) give the frequency Ωm  of the heat driven mode m in terms of the fre-
quencies ω1, ω2, ω3, … and amplitudes G1, G2, G3, … of the Green's function.We also notice that the 
time delay τ is a parameter that affects both Ωm and  um .

3.2 Calculation of the eigenfrequencies of the heat driven modes 
We consider a Rijke tube of length L =1m , diameter a =0.093m and c =350 m/s (correspond-

ing to experimental parameters in Gopalakrishnan6).The heater power is Κ=5·105 W s m–1kg–1, γ=1.4 
and the the time-lag τ is varied. The heat source position is xq=0.3L.
The frequencies ωn of the Green's function are calculated by solving Eq. (5) numerically with the 
Newton-Raphson method. The results are shown in Table 1 for the first three modes. Also shown 
are the Green's function amplitudes Gn , which were calculated from Eq. (6) and Eq. (14). 

Table 1. Values of ωn (Hz/2π) and Gn (s–1) for L =1m, a =0.093m and c  =350 m/s, xq =30cm =0.3L .

n ωn Gn

 1 986 – i 2.61·10–14   –111 – i148
2 1970 – i1.021·10–15 –16.9 + i135
3 2940 – i 2.67·10–14  –52.8 + i18.9

 We now use the values in Table 1 to determine the properties of the heat driven modes. The 
frequencies Ωm are calculated from Eq. (15), with the sum truncated at three different thresholds: 
one term only (n=1), first two terms (n=1, 2) and first three terms (n=1, 2, 3). The results for Ω1 and 
Ω2 are shown in Table 2. The values of the time-lag τ are listed in the first column. The subsequent 
three columns show Ω1 and Ω2  for the three truncation thresholds mentioned above.

Table 2. Values of Ωm (Hz/2π) as a function of ωn and τ , xq=30cm =0.3L.

τ ω1 ω1 + ω2 ω1+ ω2 +  ω3

 τ =0.2 ms =0.03T1 Ω1 = 1100 + i23.3 Ω1 = 1120 + i32.1
Ω2 = 1830 – i33.2

Ω1 = 1130 + i3.43
Ω2 = 1820 – i3.58

τ =1.8 ms =0.28T1 Ω1 = 973 + i99.7 Ω1 = 962 + i96.2
Ω2 = 2070 + i35.4

Ω1 = 959 + i95.4
Ω2 = 2062 + i31.4

τ =3.4 ms =0.53T1 Ω1 = 871 + i22.7 Ω1 = 881 + i13.1
Ω2 = 1840 + i26.6

Ω1 = 884 + i10.5
Ω2 = 1840 + i33.9
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τ =5.0 ms =0.78T1 Ω1=1110 – i20.8 Ω1=808 – i188
Ω2=2040 + i47.9

 Ω1=835 – i180
Ω2=2043 + i43.7

The time-lags were chosen from a large range: from a very small fraction of T1 (the period of the 
first mode, T1=2π/ω1=6.4·10–3 s) to nearly equal to T1 . 

We observe that the imaginary part of Ω1 is negative for the first three τ values considered and pos-
itive for the last one. This means that the first mode, which is initially stable, becomes unstable for 
delays which are sufficiently large. Similarly, the second mode switches from unstable to stable. In 
general, from the Rayleigh criterion7, we expect the stability of a mode to change for time-lags lar-
ger than half its period and smaller than one period. However as the real part of the heat driven fre-
quency is also changing with the time-lag, the stability of each mode can not be determined by us-
ing the Rayleigh criterion. At the same time the heat driven frequency changes with the number of 
natural modes involved in the calculation. Therefore it is important to understand the role of the 
time-lag in the heat release and the interaction between its natural modes. In order to evaluate the 
effect of the resonant modes of the pipe, we investigate the transition from stable to unstable (and 
vice-versa) of the first two heat driven modes as a function of τ. In Table 3 we report the first two  τ 
values for which we observe a change in the stability of each mode.
Table 3. Values of τ at the transition of each mode from stable to unstable (and vice-versa), xq=30cm= 0.3L.

Ω ω1 ω1 + ω2 ω1+ ω2 + ω3

 Ω1
τ1 = 3.70 ms =0.58T1

τ2 =6.75 ms =1.05T1

τ1 = 3.55 ms =0.55T1

τ2 = 6.65 ms =1.04T1

τ1 = 3.55 ms =0.55T1

τ2 = 6.60 ms =1.03T1

 Ω2 - τ1 = 1.65 ms =0.26T1

τ2 = 3.55 ms =0.55T1

τ1 = 1.65 ms =0.26T1

τ2 = 3.60 ms =0.56T1

We observe that the transition value of τ tends to decrease when more natural modes of the pipe are 
taken into account and the difference is more evident for Ω1. 

3.3 Calculation of the amplitudes of the heat-driven modes
We will now use the results for Ω1 and Ω2 in Table 2 to find the modal amplitudes of the first 

two heat driven modes. In order to have enough equations to derive u1 and u2, we will write 
Eqs. (16) for ωn = ω1 and ωn = ω2.  We obtain a system of four equations for the complex amplitudes 
which can be represented as a 4×4 matrix and solved for the unknown variables u1, u1*, u2 , u2*. We 
will assume an infinitesimal perturbation for the initial values of the system, whose strength is ex-
pressed by the parameters φ0 = 10–9m3s–1 and φ0' =10–6m3s–2 . The results are given in Table 4 for dif-
ferent values of τ.

Table 4. Values of the modal amplitudes um (m/s) as a function of  τ , xq=30 cm=0.3L.

 τ =0.2 ms =0.03T1 u1= (8.3+ i8.88)·10–10 u2=( – 1.54 – i0.678)·10–9

τ =1.8 ms =0.28T1 u1=(4.56 + i4.89)·10–10 u2=(–1.20 – i0.283)·10–9

τ =3.4 ms =0.53T1 u1=(6.04 + i6.57)·10–10 u2=(–1.33 – i0.449)·10–9

τ =5.0 ms =0.78T1 u1=(5.21+ i4.66)·10–10 u2=(–1.16– i0.216)·10–9

3.4 The acoustic velocity
Substitution into Eq. (7) of he modal amplitudes in Table 4 and the corresponding heat-driven 

frequencies in Table 2, makes it possible to compute the acoustic velocity resulting from the contri-
bution of the first two modes. The time evolution uq(t), for different values of the time lag is shown 
in Fig. 2, for the heater position xq=30 cm, which is in the upstream half of the tube. 
ICSV21, Beijing, China, 13-17 July 2014 5
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The plots show that the model predicts instability for all τ values considered. We observe that for 
the smallest of the τ the first mode dominates, as we expected from the imaginary part sign of the 
respective frequencies. For larger time-lags, τ=5 ms the situation is reversed and the second mode 
dominates. We note that, as we used a linear heat release characteristic the instability does not satur-
ate and that the amplitude of uq  grows without limit. 

We will now investigate the stability of the system for a different heater position, xq=70cm, 
which is in the downstream half of the Rijke tube, repeating the calculations in Sections 3.2 and 3.3. 
The results for the modal amplitudes and frequencies are summarized in Table 4 and the corres-
ponding time evolution is shown in Fig. 3. We observe that the system is now stable for τ =1.8 ms, 
when both the first and the second mode are stable, while the instability grows for the remaining 
values of the time-lag.

              Table 4. Values of Ωm (Hz/2π) and  um (m/s) as a function of τ,  xq=70 cm= 0.7L.

 τ =0.2 ms =0.03T1
Ω1= 873– i9.76
Ω2 = 2050 + i49.3 u1= (– 4.4 – i5.3)·10–10 u2=(8.5 + i5.5)·10–10

τ =1.8 ms =0.28T1
Ω1 = 988 – i161
Ω2 = 1830 – i40.6 u1=(–9.5 – i6.9)·10–10 u2=(1.4 + i0.77)·10–9

τ =3.4 ms =0.53T1
Ω1 = 1080 + i53.1
Ω2 = 2030 + i55.8 u1=(–6.3 – i4.5)·10–10 u2=(1.0+ i0.64)·10–9

τ =5.0 ms =0.78T1
Ω1 = 975 + i79.1
Ω2 = 1850 + i11.5 u1=(–6.8 – i6.5)·10–10 u2=(1.0+ i0.75)·10–9

Therefore the model predicts the growth/damping of the initial perturbation inside the Rijke tube as 
the combined result of the position of the heat source and its response to acoustic fluctuations. This 
is in agreement with our expectation as the instabilities grow when the oscillations of heat release 
and acoustic field are in phase, and this depends both on the time-lag and the heater position.
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Figure 2 : Acoustic velocity at the heat source xq=30cm =0.3L, for different values of τ.



21st International Congress on Sound and Vibration (ICSV21), Beijing, China, 13-17 July 2014

4. Conclusions
We have presented a model which describes the coupling of the heat driven modes in a Rijke 

tube as a function of the tube parameters and the heat source characteristics. 
An equation for the frequency of an individual heat-driven mode has been derived. This shows that 
the Green function modes, i.e. the resonant modes of the Rijke tube without unsteady heat release, 
and the time-lag,  determine the coupling. 
The stability of the system was analysed for two different source positions and different time-lags. 
The amplitudes of the heat driven modes were derived as a function of the initial conditions. Finally 
the time evolution of the acoustic velocity was obtained for different positions of the heat source. 

The model is able to predict the linear stability of the system when a different number of res-
onant modes are taken into account. This is important as many precesses can be responsible for a 
selective response of the system to different acoustic modes. For example, it is known that the re-
sponse of the heat source to different acoustic frequencies tend to damp some modes so that higher 
modes are not usually observed7.  Losses and the presence of vorticity can also give a similar result. 
Therefore the model introduced in this paper represents a step forward in the understanding of the 
response of the system to perturbations and how the non-linear mode coupling affects the stability. 

We plan to extend our analysis to pipes having different characteristics as a temperature distri-
bution and a closed end.
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Figure 3 : Acoustic velocity at the heat source xq=70 cm= 0.7L, for different values of τ.
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