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Recently, the search for a stability margin quantity has been extended to the field of nonlinear
time series analysis, yielding a set of measures showing a smooth transition between the sta-
ble and unstable regime of a turbulent combustion system. So far, the performance of these
measures to presage instability has been tested on a few laboratory setups, without mutual
comparison of the different approaches. In this work a variety of measures are tested on a
laboratory scale burner for validation and comparison. An atmospheric, partially premixed
methane-fueled bluff-body stabilized burner is operated at 20 kW, showing stable and limit
cycle oscillation operation for varying equivalence ratio. Focus is on an early and robust de-
tection of an impending instability, suitable for on-line monitoring. Two data sets of acoustic
pressure are considered, with different acoustic damping. Monotonicity and unambiguity of
the stability margins are investigated. Additionally a surrogate data analysis is conducted,
showing evidence of a nonlinear underlying dynamical system. However, these nonlinearities
are found to have no significant influence on the predictions by methods that are based on
nonlinear time series analysis.

1. Introduction

Gas combustion technology is changing significantly, mainly because of environmental con-
siderations and new market requirements. With lean combustion NOx emissions are reduced sub-
stantially [1]. Near the lean blow-off limit of a combustor, the heat release rate responds fiercer to
equivalence ratio fluctuations, increasing the flame response to acoustical perturbations [2]. More-
over, design considerations for lean combustors often lead to lower acoustic damping and enhanced
coupling conditions between the flame and the acoustic field.

Renewable energy sources contribute substantially to the energy supply. From the conventional
power generation plants, gas turbine installations are most capable of flexible operation, required to
compensate for the weather dependent power coverage of wind and solar power. Increased flexi-
bility entails increased excursions through the operating parameter space of the gas turbine, where
thermoacoustically unstable regions can be encountered.

Currently, an important role is reserved for the gas turbine operator, monitoring and steering the
combustion process. Besides the set operating parameters and resulting conditions, high frequently
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sampled pressure and acceleration signals are usually available as well. Changes in spectral distribu-
tion can be assessed to foretell an instability based on experience.

More sophisticated methods have been proposed to obtain a stability margin, of which the first
passive approach (i.e. without excitation) was proposed by Lieuwen in 2005 [3]. In his method an
effective damping coefficient ζ is determined for the acoustic eigenfrequencies, utilizing the com-
bustion noise as natural excitation of the system. The damping coefficient is obtained by fitting the
exponential decay rate of the autocorrelation function of a filtered signal acquired from the thermoa-
coustic system.

The inherent nonlinearity of turbulent combustion systems with (delayed) acoustic feedback,
led researcher to seek for measures that are able to respond to the nonlinear characteristics of com-
bustion signals. These methods quantify the amount of chaos in the time series. Stable combustion
is characterized by the chaotic signal of the turbulent flame. As the system approaches the stability
limit, deterministic acoustics start to dominate the signal, until a limit cycle emerges. The degree of
determinism in the signal is found to progressively increase towards limit cycle oscillation [4].

In 2011 Gotoda et al. [5] used a method to extract the determinism in a time series recorded from
a swirl combustor. In a later publication this measure, named ‘translation error’, is explicitly referred
to as a potential stability margin measure [6]. Simultaneously nonlinear methods have been explored
at the Department of Aerospace Engineering at the IITM in Chennai, India. Nair et al. [4] proposed
to use a chaos test developed by Gottwald et al. [7] for combustion characterization. Moreover, Nair
stressed that several other measures appear suitable as smooth stability margins, including measures
from the Recurrence Quantification Analysis (RQA) [8]. Most recently the multifractal signature in
combustion noise at the onset of instability is investigated [9].

Absence of mutual comparison and application of the measures on different combustion systems
makes it unclear which measure is most suitable to foretell thermoacoustic instabilities. The benefit
of applying nonlinear time series analysis has not been clearly demonstrated either.

In this work four proposed stability margin measures have been tested: Lieuwen’s damping
coefficient, translation error, Gottwald’s 0-1 test and RQA Determinism. The methods are mutually
compared. Moreover, the results have been compared to the publications in which the measures have
been proposed (not available for RQA Determinism). For details about the methods and their settings,
the reader is referred to the above references.
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Figure 1: Burner geometry and close up of the
bluff-body. Dimensions in mm. P:
Plenum, F: Flame, L: Liner, B: Fuel
injection holes, S: Pressure sensor,
D: Damping orifices (�=4)

Two slightly different acquired data sets have been
put to the test, distinguished by their acoustic damping.
Both sets show limit cycle oscillation and stable opera-
tion for a changing equivalence ratio. A surrogate data
analysis algorithm is applied to validate whether the re-
sults of the applied methods can actually be assigned to
the nonlinear features of the considered time series.

2. Experimental setup

Measurements were performed on a laboratory
burner, designed to be prone to thermoacoustic instability
[10]. The geometry is sketched in figure 1. Air enters the
combustor at the base of the plenum. Methane is injected
from small holes on the bottom sides of the prismatic tri-
angular bluff-body, into the air flow. The partially pre-
mixed flame is anchored on top of this bluff-body flame
holder. The combustion chamber is a long liner, with
poorly damped longitudinal acoustic eigenmodes.
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The pressure transducer is positioned in a water-cooled holder fixed in the liner, approximately
12 cm above the bluff-body location. This ensures the sensor collects the pressure to which the flame
is subjected up to high frequencies. Measurement holes with a diameter of 4 mm are located along
both sides of the burner. The holes 12 cm upstream of the flame holder have been opened to increase
the damping in the second case.

The methane flow is fixed by a valve, such that 20 kW (lower heating value) thermal power
is obtained in case of complete combustion. The airflow is controlled manually in order to vary
the air excess ratio λ. Data of the operating conditions are collected approximately once a second,
while pressure oscillations are sampled with 5120 Hz using a piezoelectric pressure transducer. The
instability manifested is the first longitudinal mode (quarter-lambda mode) with fd ≈ 100 Hz.

It has to be noted that the flame at the bluff-body was not anchored properly. Temperature
distributions suggest that at one side of the burner, the flame was located below the bluff-body. This
indicates an unintended recirculation and a three-dimensional flow field. For the current investigation
this complication of the simple thermodynamic system is not considered detrimental.

3. Nonlinear time series analysis

Turbulent combustion noise is an inherently nonlinear phenomenon, therefore it seems logical
to apply techniques that respond to nonlinear dynamics, in characterizing a thermoacoustic system
excited by a turbulent flame.

3.1 Phase space reconstruction

The first step consists of the reconstruction of a phase space. For a single measured time series
this is done on basis of Takens’ time delay embedding theorem [11]. It states that a phase space of
dimension D0 can be reconstructed for every dynamic system by generating the position vectors X by
time delayed values of signal x(t).

X(i,D0) = [x(ti), x(ti + τ), ..., x(ti + (D0 − 1)τ)] (1)

Two parameters, τ and D0 have to be fixed appropriately for the reconstruction.

3.1.1 Time delay

The time delay τ is chosen on basis of the average mutual information in this work [12]. The
first minimum in the mutual information is considered the optimal time delay. This way the delayed
vector locally shares minimal information with the original counterpart, while the time delay still falls
well within the dominant time scale of the dynamics. The mutual information for stable combustion
at λ = 2.8 yields an optimal time delay of τ = 2.54 ms. This corresponds to a phase shift of π/2
of the dominant longitudinal acoustic mode (±100Hz). Note that the exact choice of τ is not very
critical, and other determination methods yield approximately the same delay for the current data.

3.1.2 Embedding dimension

A False Nearest Neighbour method is applied to determine the dimension at which the embed-
ding can be truncated. Embedding a dynamical system in a too high dimension can be compared to
investigating a photograph from all sides, while looking at it from the front gives all the information
of interest. In practice, noise in the time series will cause the points to spread over infinite dimensions
in phase space, therefore a truncation criterion will have to be used.

The False Nearest Neighbour method of Cao [13] is adapted in this work, which makes use of
two parameters E1 and E2.

E1(D) =
E(D + 1)

E(D)
and E2(D) =

E∗(D + 1)
E∗(D)

(2)
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The first parameter is based on E, a measure related to false crossings of trajectories in phase
space. When trajectories cross in phase space, the intersection point has two possible dynamical
states and therefore the embedding dimension of that phase space was too low. E∗ is an error norm
of a simple nonlinear predictor. The predictor sets the future value of a point to the corresponding
value of the closest point in phase space. For a detailed description of the parameters the reader is
referred to the publication of Cao [13]. When the parameter E1 becomes independent of the embed-
ding dimension, there would be no benefit to increase the dimension and the minimum embedding
dimension D0 is found. When E2 is unity for all dimensions, the time series is a random distribution
rather than coming from a high-dimensional system.

The Cao parameters for stable operation (λ = 2.8) are presented in figure 2 for 3.2 seconds
of recorded data. The parameter E1 slowly converges to unity, not giving a clear attractor dimension
where the system could be truncated. Setting a threshold at for instance E1 = 0.95, it could be asserted
that most of the dynamics is captured in a 9-dimensional space.

3.2 Surrogate data analysis

Surrogate data analysis can be used to confirm or reject a hypothesis on the underlying dynam-
ics of a time series [14]. Nair et al. [4] rejected the hypothesis that combustion noise is random
uncorrelated noise, by creating randomly shuffled surrogate data sets. That there is some determinism
in combustion noise should actually be no surprise. The question we have to ask is whether nonlinear
behaviour can be demonstrated, in order to justify the use of a nonlinear framework. To this end the
Amplitude Adjusted Fourier Transform (AAFT) algorithm is applied [15]. The algorithm is suitable
to the null hypothesis that the data come from a linear Gaussian process, whether or not observed
through a nonlinear measurement function.

The above determination of the minimal embedding dimension did not return a satisfying result.
Ideally a dimension is found, clearly discriminating a dominant attractor from background dynamics
and noise. The slow convergence of E1 does not give this opportunity. As E1 is supposed to respond
to the attractor characteristics of the nonlinear time series, this parameter is an interesting candidate
to investigate with the AAFT Surrogate data method.

3.2.1 Amplitude Adjusted Fourier Transform algorithm

In the AAFT algorithm, the phases of the real data series are randomized in Fourier domain. In
general this will yield a data set with a different probability density function (pdf) of the amplitude in
time domain. By iteratively enforcing the amplitude distribution and power spectrum of the real data
set, the AAFT surrogate data is obtained after convergence. This algorithm ensures surrogate data sets
can be discriminated from the real data neither by its amplitude distribution nor by its power spectrum,
yet the dynamics have been randomized by scrambling the phase of the spectrum. The geometrical
structure of an attractor will be destroyed, yielding a dimension of the order of the amount of data
points considered.

When a chosen statistic of the real series falls outside of a certain confidence interval of the
surrogate values, the hypothesis of an underlying linear process can be rejected. The Cao parameters
are relevant candidates to affirm or negate the hypothesis since they are meant to quantify a nonlinear
characteristic of the time series [15].

The result of the surrogate data analysis has been added in figure 2. The mean of 25 surrogates
is shown, including 2σ deviations as an approximate 95% confidence interval. Both E1 and E2 fall
on top of the confidence band of their surrogates counterparts. Even though it is known that the
underlying physics are nonlinear, the hypothesis can not be rejected with these parameters. This
means that for all we know, the combustion noise might as well be driven by a linear Gaussian
process. It appears that a dimension found with the Cao method is not related to a specific shape of the
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Figure 2: Cao parameters for real and surrogate
data (window size = 3.2 s)
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Figure 3: E∗ prediction error for real and surro-
gate data (window size = 3.2 s)

reconstructed attractor, but is solely determined by the power spectrum and/or amplitude distribution
of the signal.

The Cao parameters are ratios for increasing dimension, which seems to obscure the absolute
difference between the real and surrogate data of the underlying parameters E and E∗. If the analysis
is applied on E∗ directly, the null hypothesis can be rejected with rather high confidence, see figure 3.
For every D ≥ 2 the real data even falls outside of a 4σ-band (> 99% confidence) around the surrogate
mean values. The minimum value of E∗ is found at D = 4, meaning that an embedding in 4D yields
best predictive power. This can be explained by the fact that a prediction from a higher dimension
uses an additional pressure sample further back in time, reducing the weight of the point closest (in
the time series) to the value to be predicted.

4. Results

The four stability margin measures are applied to dynamic pressure time series obtained from
the methane burner. Parameters for the phase space reconstruction are fixed on basis of the findings
in section 3.1 and 3.2. The time delay is set to 2.54 ms and the dimension to D0 = 5. Note that the
latter is chosen on basis of the nonlinear predictor E∗ rather than the Cao parameters. The criterion
for D0 is taken as the location of the minimum of E∗ in the intermittent region.

4.1 Data sets

Two data sets are recorded along the same operating line of the bifurcation parameter. In the
second run two access orifices in the plenum chamber were opened, resulting in increased damping
for the low acoustic frequencies of the burner. This added damping results in effective suppression of
thermoacoustic instabilities; when more orifices were opened, no limit cycle oscillation established
in the studied parameter space.

The burner was operated for several minutes at λ > 3, to warm up the system and reach a steady
combustion state. Subsequently data was acquired while the air flow was slowly reduced until the rich
combustion limit (λ ≈ 0.5) of the burner. Significant intermittency in the pressure signal is found for
λ < 1.6, and transition to limit cycle occurs at λ ≈ 1.1. At stoichiometric operation (λ = 1) the
combustion process is unstable. Lowering λ further causes a flame to become anchored on top of the
open end of the burner, resulting in an undesired (stable) combustion solution.

The limit cycle oscillations occur at slightly higher λ in the damped data set. Furthermore,
amplitudes are somewhat lower as a result of the increased damping. The biggest difference is found
in the intermittent region. Where the first data set shows constant humming with amplitude variation,
the damped data set is quite silent with short, high amplitude bursts.
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Figure 4: Stability margin results of both original (O) and damped (D) case, for the four investigated measures
for slowly descending λ. Time windows of 0.8 seconds (4096 data points). Thermoacoustic state
abbreviated to S(table), I(ntermittent) and U(nstable)

4.2 Response of the measures

The measures are applied to windows of 4096 data points, corresponding to 0.8 seconds with
the current sample rate. An overlap of the windows of 50% is used. In order for the measures to
extract useful information, enough points should be available in the windows to guarantee that the
underlying dynamics can be captured. On the other hand a quick characterization of the system is
required for on-line monitoring of the measures. A time delay of more than a second in a control loop
is considered to become a significant impediment for operating flexibility. The slope of the bifurcation
parameter is dλ/dt ≈ −0.01 s−1, such that the process can be assumed quasi-stationary.

Both the analysis of the original data series (O) and the damped series (D) are shown simulta-
neously in figure 4. A first overall impression of the results is that the measures clearly respond to a
change in the equivalence ratio, however, a lot of variation in values for the measures is encountered.
The damped data set generally results in higher values, as to be expected for more stable operation.

For both cases, the damping coefficient does not show a very clear trend throughout the inter-
mittent region, but only discriminates limit cycle oscillation clearly. Strikingly the path towards the
unstable region is not a monotonic decreasing function for the damped data set. The order of mag-
nitude of the damping coefficient and the general behaviour of this measure agree with the original
work by Lieuwen [3]. The fluctuations found in this work are much more pronounced, but the signal
length considered and amount of averages are not mentioned by Lieuwen.

The logarithm of the translation error is found to be predominantly linear with respect to λ for
the first data set. Transition from high amplitude intermittency to limit cycle oscillation is character-
ized by a further drop to a constant value. Tachibana et al. [6] found a more clear transition between
stable and unstable operation, comparing their translation error with a damping coefficient based on
the peak width of the considered frequency. This observation (made for a swirl combustor) is now
shown to hold for the bluff-body combustor in this work. In this statement it is assumed that damp-
ing coefficient estimates from peak width and autocorrelation decay rate yield qualitatively similar
results.
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The Gottwald test and RQA Determinism show a relatively smooth, monotonic decay towards
instability. Comparing the results for the Gottwald test with the work of Nair shows that the sta-
bility characteristics of the combustors are quite different. In figure 4 it is found that the measures
change over the entire domain of allowable equivalence ratios. The combustor used by Nair yields
K = 1 (stable, chaotic signal) for most of the parameter space and drops only shortly before insta-
bility. A connoted threshold of 0.9 would not work on the burner in this investigation, since it would
unnecessarily exclude a large part of the operating window.

Due to the change in the characteristics of the intermittent region, the set with added damping
does not show a monotonic change in the translation error towards instability. The translation error
even strongly suggests that the system is getting away from instability just before the transition to
limit cycle oscillation. The Gottwald test has some large outliers that claim a chaotic and thus stable
system in the intermittent region. The RQA Determinism measure is least misled by the intermittent
behaviour in the damped data set.

This example with a subtle change in boundary conditions (added damping) shows that a mono-
tonic decrease towards instability is not always found. Therefore a specified threshold cannot guar-
antee a certain margin between the considered operating point and the onset of instability. Different
conditions lead to different behaviour in the intermittent region between stable and unstable operation
that is characterized by the measure.

All methods investigated in this work scarcely respond to scrambling of the data by the AAFT
algorithm. Differences found are of the same magnitude as those found for the linear damping coef-
ficient, and do not contribute to the performance of the methods.

5. Conclusion

Combustion noise has a very high – if not infinite – dimension, making an unequivocal choice
for an embedding dimension impossible. Surrogate data tests show that the improved False Nearest
Neighbour method developed by Cao does not give valuable results for combustion noise. The same
embedding dimension is suggested for any time series with equal power spectrum and amplitude
distribution, confuting the ability of this method to find a sufficient embedding dimension based on
the dynamics of the underlying nonlinear system.

Although the average value of a measure at a certain state results in a relatively smooth curve
from stable to unstable, large fluctuations are found between measurements at a fixed value of the
bifurcation parameter. These fluctuations result from the chaotic dynamics, having time scales that
are not sufficiently small with respect to the considered time window. The fluctuations can be reduced
by increasing the window length or smoothening the values afterwards. Inevitably this results in a
longer time lag in determining the corresponding value of the measure.

Compared to the damping coefficient proposed by Lieuwen, the methods based on nonlinear
time series analysis show a smoother decay towards instability. Determination of an unambiguous
effective acoustic damping based on combustion noise excitation appears to be difficult. Moreover in-
termittency complicates the determination of a proper damping coefficient. This lack of performance
is not the result of the linear theory which it is based on, since the same conclusions would be drawn
when all methods are applied to AAFT surrogate data sets. The introduction of nonlinear time series
analysis in the search for a stability margin is beneficial because it opens a new library of methods that
obviously can also be applied to predominantly linear systems. Attempting to quantify chaos simply
yields less relative spread in the results, in comparison to the quantification of acoustic damping.

By changing the acoustic boundary conditions it is shown that a small system modification can
have quite a large influence on the bifurcation behaviour of the dynamical system. The damped time
series shows different behaviour in the intermittent regime, which is characterized by the measures.
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A successful stability margin should be insensitive to different transitions to instability, otherwise no
quantitative critical value of the measure exists that should not be passed.

If a quantitative critical threshold value for the stability margin cannot be found, instability can
still occur “out of the blue”. Measures as those investigated in this work can therefore only serve as an
additional decision making tool for the operator. A stability margin measure that is applicable under
different conditions should be fundamentally based on knowledge about the transitional behaviour
and thus on the underlying complex dynamics of the specific thermoacoustic system.
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