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In this paper, we present analysis of the propagation of acoustic plane waves in an
impedance tube, in which a liner is attached at one end of the duct. The purpose is to
evaluate a linearized Navier-Stokes solver as a tool to determine the acoustic performance
of the liner. The liner considered consists of a perforated plate with several circular holes
and a rectangular back cavity. The influence of parameter variations such as plate thickness,
porosity area examined.

The prediction of the acoustic characters of the liner is based on the numerical solutions
of the linearized Navier-Stokes equations in frequency domain in three space dimensions.
The impedance as well as reflection coefficients of the liner for frequencies in the plane
wave regime are obtained by two-microphone method data, which are compared to exper-
imental data as well as results from a semi-empirical model. The results presented in this
paper agree very well with results of the linear semi-empirical model, while there are some
discrepancies to the experimental results. The reasons for these discrepancies are not fully
understood, but could partly be due to that a linear assumption is not always valid.

I. Introduction

Liners are a standard mean to reduce engine noise in today’s aeroengines. In order to optimize the design
of the liner, it is essential to be able to predict the acoustic performance of the liner already in the design

phase of the aero-engine. Hence, accurate and efficient prediction tools are of vital interest.
A liner typically consists of a perforated plate with small holes. The dissipation in the acoustic boundary

layer has a strong damping effect on the acoustic waves in the small sized holes, which are typically around
1 mm in diameter. When the perforated plate is mounted on to a cavity, the phase of the incident wave is
changed due to the reflection caused by surrounding walls of cavity. Large amplitudes will appear at the
Helmholtz resonance frequency of the cavity which will enhance the acoustic dissipation at this frequency.

The impedance of a liner is in general determined primarily via semi-empirical models and experiments.
However, the use of the semi-empirical models is still demanding, when significant changes in the liner
structure are made, implying that the prediction of liner impedance becomes less reliable.1 The impedance
of a liner within an impedance tube can be determined experimentally in several ways. One way is to
use a two-microphone technique, such as that discussed by Bodén and Åbom2.3 In this paper, the same
two-microphone technique is used to calculate the impedance from the numerical results.

In a series of papers, Tam et al4,5 studies damping of acoustic waves in a perforated liner using direct
numerical simulation(DNS). It is found that the viscous effects are dominant in the vicinity of the wall
of the holes in the perforated plate, while the compressibility effect is dominant further away from the
wall. By solving the compressible Naiver-stokes equations in time domain, Zhang and Bodony6 performed
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DNS simulations of acoustic waves through a circle orifice that is backed by a hexagonal cavity, where two
time-domain models for the orifice fluid velocity were presented.

For design purposes it would be of interest to have a simulation methodology which is less computationally
expensive than DNS or Large Eddy Simulations (LES). For this purpose, the frequency-domain linearized
Navier-Stokes methodology is evaluated in this paper as a tool to determine the impedance of a liner in an
impedance tube . Under the assumption of linear acoustics, it has potential to be a useful tool for simulations
of the acoustic properties of liners since viscous dissipation is included in the governing equations. The
primary objective of this paper is to evaluate the use of a linearized Navier-Stokes solver to be used for
predictions for the impedance of a liner consisting of a perforated plate and a back cavity which is placed in
an impedance tube. Another objective is to investigate the influence of the liner perforation and thickness
of the perforated plate for a frequency range of plane acoustic waves. The numerical results are compared
to experimental data obtained at KTH, see Kabral et al.7

The paper is organized as follows. In Sec II the geometry of the liner is described, followed by a presen-
tation of the linearized Navier-Stokes equations as well as the numerical setup and post processing technique
used in Sec III. In Sec IV a semi-empirical model, which is used for comparison, is described. The numer-
ical results and the comparison to experimental and theoretical results are presented in Sec V followed by
conclusions.

II. Liner geometry

The liner investigated in this paper consists of a rectangular cavity and a perforated plate with circular
holes mounted on top of the cavity. The key parameters involved in determining the acoustic impedance of
the liner are the diameter of the circular holes of the perforated plate, plate thickness, perforation ratio, as
well as the dimension of the cavity.

Fig 1 shows the geometry of the hybrid liner. As shown in the figure, each cavity is covered by a segment
of the perforated plate with several small holes. Plates with two different number of holes per cavity are
investigated, 6 and 9 holes, with the same hole diameter of the single hole φ = 1.5mm. This in turn yields
a porosity 22% and 33%, respectively. The simulated results are compared to measured data7 where the
number of holes per cell matches exactly the number of holes per cell in experiments.

Figure 1. The schematic of the liner geometry

III. Governing equations, numerical setup and post-processing

A modeling framework for solving the linearized Navier-Stokes equations in 2D cartesian coordinates or
axisymmetric cylindrical coordinates was developed by Kierkegaard et al.8–10 Later on, the methodology was
extended to 3D cartesian coordinates11,12 and initial simulations of the acoustic properties of a perforated
liner were performed. In the present paper simulation results compared with detailed experimental data,
measured at KTH, for acoustic wave propagation in an impedance tube.7

The linearized Navier-Stokes equations are derived from the full compressible Navier-Stokes equations.
For clarity, we include a brief description here. The current implementation of the frequency domain lin-

2 of 12

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 K

U
N

G
L

IG
A

 T
E

K
N

IS
K

A
 H

O
G

SK
O

L
E

N
 K

T
H

 o
n 

A
ug

us
t 1

2,
 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

4-
29

60
 

Preprint



earized Navier-Stokes equations can be written as:

−iωρ̂+ u0 · ∇ρ̂+ û · ∇ρ0 + ρ0∇ · û + ρ̂∇ · u0 = 0 (1)

−iωρ0û + ρ0(u0 · ∇)û + ρ0(û · ∇)u0 + ρ̂(u0 · ∇)u0 =

−c2∇ρ̂+ µ(∇2û +
1

3
∇(∇ · û)) +∇µ·(∇û + (∇û)T )− 2

3
(∇ · û)∇µ+ ρ0F̂

(2)

where a hat ˆ indicates a perturbed quantity, a subscript zero indicates mean flow quantities, ρ is the
density, u is the velocity vector, F is a volume force, ω is the angular frequency, c is the speed of sound and
µ is the kinematic viscosity.

A frequency domain approach has been taken by prescribing harmonic time-dependence of the perturbed
quantities. In this way, any perturbed quantity q

′
can be represented as q

′
(x, ω, t) = Re

{
q̂(x)e−iωt

}
, where

q̂ is a complex quantity and ω is the angular frequency.
Furthermore, an isentropic relation between pressure and density is assumed in Eqs. (1-2), that is

∂p̂

∂xi
= c2

∂ρ̂

∂xi
(3)

where c2(x) = γp0/ρ0 is the local adiabatic speed of sound, and γ is the ratio of specific heats. With
this relation, the fluctuating pressure becomes redundant and can be removed from the system, and the
continuity and momentum equations are decoupled from the energy equation. In this way, the size of the
computational problem is considerably reduced.

The following boundary conditions are used in simulations. At the impedance tube walls, a rigid wall
slip boundary condition is imposed in the longitudinal direction as

û · n̂ = 0, n̂ · ∇ρ̂ = 0, (4)

In the vicinity of walls of circular holes, rigid wall no-slip boundary conditions are applied as

û = 0, n̂ · ∇ρ̂ = 0. (5)

where n̂ is the unit vector normal to the walls.
The viscosity in the whole numerical zones can be written as

µ = µphysical + µartifical (6)

where µartifical = 0 and µphysical = 1e−5 at the solid boundaries. Buffer zones are used to damp out the
acoustic waves, in the buffer zones, the µartifical is ramped up as a cubic polynomial through the buffer zone
to a specific value, in this case, µartifical = 10.

The simulations are carried out in COMSOL 4.3a, which is a commercial finite element method (FEM)
solver. The numerical model also includes the possibility to include a metal foam via the use of the Delany-
Bazley model, see Kierkegaard et al11 for further details.

A. Numerical setup

A schematic of the geometry in the calculation is shown in Fig 2. Compared with the full duct length of the
experimental rig, see Kabral7 for further details, the duct length used in the acoustic simulations is around
0.7m to reduce computational costs. Both of the height and the width of the duct is 6.9mm, it equals to the
dimension of the single cavity.

At the upper end of the impedance tube, a buffer zone is placed in the simulations to avoid reflections.
The incident plane wave is placed as a body force in momentum equation in the buffer zone. The mesh
used in simulations is unstructured prism mesh with about 210000 elements, the overview mesh and the
mesh in the vicinity of the perforated plate is shown in figure 3. The sound excitation is the plane wave
from 1500Hz to 5500Hz yielding that the maximum wavelength of the acoustic wave is 226.7mm and the
minimum wavelength is 7.2mm, with a grid element size 1mm, there are 7 elements per wavelength for the
high frequency.
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Figure 2. Schematic sketch of the numerical model of impedance tube

(a) Overview of the mesh for the impedance tube (b) The mesh shown in the vicinity of the perforated plate

Figure 3. Overview of the mesh for the acoustic field
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B. Post-process: two-microphone technique

In order to characterize the acoustic performance of the liner, the impedance and the reflection coefficient
is calculated from the numerical results. In the straight cylindrical duct the sound field below the cut-on
frequency will consist only of plane waves. In the frequency domain, the sound field can then be written as13

p̂(x, f) = p̂+(f)exp(−ik+x) + p̂−(f)exp(ik−x) (7)

where p̂ is the Fourier transform of the acoustic pressure, x is the coordinate along the duct axis, f is
the frequency, k is the complex wave number ± denotes propagation in positive and negative x-direction, r
is the density and c is the speed of sound.

By assuming the complex wavenumbers are known in the duct, the incident and reflected wave amplitude
p̂+ and p̂− can be calculated using two microphone positions as shown in Fig 4

p̂1 = p̂+(f) + p̂−(f) (8)

p̂2 = p̂+(f)exp(−ik+s) + p̂−(f)exp(ik−s) (9)

where s represents the microphone separation. Eqs. (8) and (9) imply that

p̂+(f) =
p̂1(f)exp(ik−s)− p̂2(f)

exp(ik−s)− exp(−ik+s)
(10)

p̂−(f) =
−p̂1(f)exp(−ik+s) + p̂2(f)

exp(ik−s)− exp(−ik+s)
(11)

Figure 4. Simulation and measurement configuration for the two-microphone method

IV. A semi-empirical impedance model

In this paper, the simulated normalized impedance of the liner is compared to the results of a semi-
empirical model. The normalized impedance is defined as the ratio of impedance and the characteristic
impedance14

z = Zs/Zc = r + jχ (12)

where Zs is the specific impedance, Zc = ρ0c0 is the characteristic impedance of air, where ρ0 is density
of air and c0 is the speed of sound. The real part r is refered to the resistance, while the imaginary part χ
is refered to the reactance.

There exists a number of empirical and semi-empirical model for the acoustic impedance of perforated
plates with circular holes, in the absence of the mean flow. In this paper we will use the model proposed by
Bauer,15 where the normalized impedance for an circular orifice without flow is expressed as

z =

[(√
8µρ0ω

ρ0c0σ

)(
1 +

t

d

)]
+ j

[
k(t+ 0.25d)

σ

]
. (13)

Here, ρ0c0 is the characteristic impedance of the medium, µ is the viscosity coefficient of the medium, σ is
the porosity of the perforated plate, d is the diameter of circular holes, t is the thickness of the perforated
plate, ω is the circular frequency and k is the wave number.
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The resistance of the liner is only determined by the perforated plate, while the reactance consists of two
parts, one part due to the perforated plate and the other by the cavity. The reactance of the cavity is

χcavity = −cot(kH) (14)

where k is wave number and H is the depth of the cavity. Hence, a model for the resistance and reactance
by semi-empirical model for the impedance of a liner can be expressed as

r =

[(√
8µρ0ω

ρ0c0σ

)(
1 +

t

d

)]
(15)

χ = −cot(kH) +

[
k(t+ 0.25d)

σ

]
(16)

V. Results

In this section we present the results of the numerical simulations using the linearized Navier-Stokes
equations methodology as described in Sec III. The impedance and the reflection coefficient of the liner
in a quiescent medium is compared to results from an semi-empirical model and experiments. The sound
excitation is the plane wave from 1500Hz to 5500Hz. The liners response to variations in parameters such
as the porosity and the thickness of the plate are presented.

First, in order to check the influence of the grid resolution on the numerical results, simulations for two
different mesh sizes were carried out. The results from the semi-empirical model in in Sec IV are also shown.
With the finer mesh, the mesh was particularly refined in the regions close to the solid walls in the the
vicinity of the perforated plate. The results are shown in Fig 5. There is only small differences between
different meshes where the results obtained with finer mesh is closer to the semi-empirical results. For the
grid with a lower resolution of the acoustic boundary layer the resistance is lower than for the finer grid
and the semi-empirical model while higher values are obtained for the reflection coefficient. However, these
differences are of the order of a few percent. The finer grid is used in all simulations presented below.

In Fig 6 the resistance, reactance and the magnitude and phase of the reflection coefficient as a function
of frequency are presented together with the results from the semi-empirical model in Sec IV as well as
experimental data. The numerical results agree very well with the semi-empirical model. The resistance
obtained from the simulations is lower than experimental results while the reactance of impedance agrees
perfectly with the semi-empirical model. In the region for small values of the reactance the agreement is
excellent with the experimental results, indicating that the simulation tool is able to predict the region of
interest for the resonance frequency of the liner. The discrepancy between the experimental and numerical
results in the resistance indicate that the dissipation due to viscous effects is larger in the experiments
compared to what is obtained in the simulations. One possible explanation could be that nonlinear effects
are present in the experiments, while the current numerical solver used in this paper is limited to linear
acoustics. This possible explanation is supported by the fact the the simulated data agrees very well with
the linear semi-empirical model. However, further studies are needed to sort out the reason for these
discrepancies.

In Fig 7 the impedance and reflection coefficients for two different thicknesses of the perforated plate are
shown. The thickness of the plates were 0.6mm and 1.2mm, respectively. It is seen that with a thinner
perforated plate, the impedance of the perforated plate is lower than for the thicker one which can also be
seen in the experimental results and semi-empirical results. In general, the shift in amplitude of the reflection
coefficient due to the two plate thicknesses seen in the experiments is captured in the simulations. As for the
thicker plate, there is an excellent agreement between the simulated and experimental results in the region
of small values of the reactance also for the thinner plate.

Finally, a comparison between perforated plates with different porosities namely with 22.27% and 33.3%,
respectively were performed. The liner geometry with the porosity 22.27% corresponds to a 6 holes in the
perforated plate, and the porosity 33.3% was obtained through a plate with 9 holes in the perforated plate.
The same hole diameter, φ = 1.5mm, was used for the different plates. The grid used has the same resolution
for the 9 hole geometry as for the 6 hole geometry. As for the variance in plate thickness, it can be seen that
the numerical solver is capable of capturing the difference in amplitude due to the different porosities.
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Figure 5. Resistance (upper left), reactance (upper right) and the magnitude (lower left) and phase (lower
right) of the reflection coefficient as a function of frequency for two different meshes. Results for the semi-
empirical model is included
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Figure 6. Resistance (upper left), reactance (upper right) and the magnitude (lower left) and phase (lower
right) of the reflection coefficient as a function of frequency. Results for the semi-empirical model as well as
experimental data is included.

8 of 12

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 K

U
N

G
L

IG
A

 T
E

K
N

IS
K

A
 H

O
G

SK
O

L
E

N
 K

T
H

 o
n 

A
ug

us
t 1

2,
 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

4-
29

60
 

Preprint



1500 2000 2500 3000 3500 4000 4500 5000 5500
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Frequency [Hz]

R
e
(Z

c
/Z

a
ir
)

 

 

Exp: plate thickness 0.6mm

Exp: plate thickness 1.2 mm

LNSE: plate thickness 0.6mm

LNSE: plate thickness 1.2 mm

Emprical

(a) resistance of impedance

1500 2000 2500 3000 3500 4000 4500 5000 5500
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Frequency [Hz]

Im
a
g
(Z

c
/Z

a
ir
)

 

 

Exp: plate thickness 0.6mm

Exp: plate thickness 1.2 mm

LNSE: plate thickness 0.6mm

LNSE: plate thickness 1.2 mm

Emprical

(b) reactance of impedance

1500 2000 2500 3000 3500 4000 4500 5000 5500
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Frequency [Hz]

|R
|

 

 

Exp: plate thickness 0.6mm

Exp: plate thickness 1.2 mm

LNSE: plate thickness 0.6mm

LNSE: plate thickness 1.2 mm

Emprical

(c) magnitude of reflection coefficient

1500 2000 2500 3000 3500 4000 4500 5000 5500
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

Frequency [Hz]

∠
 R

 [
d

e
g

]

 

 

Exp: plate thickness 0.6mm

Exp: plate thickness 1.2 mm

LNSE: plate thickness 0.6mm

LNSE: plate thickness 1.2 mm

Emprical

(d) phase of reflection coefficient

Figure 7. Resistance (upper left), reactance (upper right) and the magnitude (lower left) and phase (lower
right) of the reflection coefficient as a function of frequency for two different porosities thicknesses. Results
for the semi-empirical model and experimental data is included.
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Figure 8. Resistance (upper left), reactance (upper right) and the magnitude (lower left) and phase (lower
right) of the reflection coefficient as a function of frequency for two different porosities. Results for the
semi-empirical model and experimental data is included.
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VI. Conclusion

In this paper we have presented numerical results of the impedance and reflection coefficient for a liner
consisting of a perforated plate and a rectangular back cavity using a linearized Navier-Stokes solver in
frequency domain. The computational domain consisted of one cavity with 6 or 9 holes in the perforated
plate. Studies on the sensitivity of the mesh resolution, as well as liner parameters such as plate thickness
and porosity were shown. All results are compared to experimental results performed at KTH, see also the
paper by Kabral et al,7 and a semi-empirical model by Bauer.15 It is seen that simulated results are in
excellent agreement with the results by the semi-empirical model. The phase of the reflection coefficient
agrees very well with the experimental results as well as the reactance calculated from the simulated results
for low values of the reactance, that is in the region where the resonance frequency of the liner is expected to
be found. Further analysis of the potential for the solver to be used for prediction of the resonance frequency
will be performed in future studies. For all cases, the reactance from the simulated results are lower than
those based on the experimental results. The reason for this could possibly be due to non-linear effects in
the experimental data, which is not captured by the linear solver. In the present paper, the number of holes
per back cavity cell were the same as in the experiments. In future work, we will also perform simulations
of one cell with the same open area as for a six hole case.
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13Allam, S. and Åbom, M., “Investigation of damping and radiation using full plane wave decomposition in ducts,” Journal
of sound and vibration, Vol. 292, No. 3, 2006, pp. 519–534.

11 of 12

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 K

U
N

G
L

IG
A

 T
E

K
N

IS
K

A
 H

O
G

SK
O

L
E

N
 K

T
H

 o
n 

A
ug

us
t 1

2,
 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

4-
29

60
 

Preprint



14Pierce, A. D., “Acoustics-An introduction to its physical principles and applications,” Physics Today, Vol. 34, No. 12,
1981, pp. 56–57.

15Bauer, A. B., “Impedance theory and measurements on porous acoustic liners,” Journal of Aircraft , Vol. 14, No. 8, 1977,
pp. 720–728.

12 of 12

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 K

U
N

G
L

IG
A

 T
E

K
N

IS
K

A
 H

O
G

SK
O

L
E

N
 K

T
H

 o
n 

A
ug

us
t 1

2,
 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

4-
29

60
 

Preprint


	Introduction
	Liner geometry
	Governing equations, numerical setup and post-processing
	Numerical setup
	Post-process: two-microphone technique

	A semi-empirical impedance model
	Results
	Conclusion



