
Aeroacoustics: 
whistling buildings
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Beetham Tower Manchester 
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Study of sound production by flows and 
influence of flow on acoustic propagation.

-General theoretical background
-Whistling 
-Some applications to building acoustics
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Viscous effects negligible in most cases  (high Reynolds).
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𝒑 = 𝒑(𝝆, 𝒔)
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Assume local thermodynamical equilibrium:

Definition speed of sound

Linearized

Equation of state
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Non uniform force field

Entropy production

(heat transfer, combustion)

Scalar wave equation with source term
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Rijke tube (unsteady heat transfer)

pipe

Heated

grid

Flow

Heat transfer

induces dilatation

Pipe is acoustical mass-spring system

wq '
wq

dt

dV
'
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Small pulsating sphere in free space 

Monopole (wiki)
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Small pulsating sphere:
𝒑′ = ෝ𝒑𝒆𝒊𝝎𝒕 =
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𝒓
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𝒓
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Small pulsating sphere:

𝒑′(𝒂𝟎)

𝝆𝟎𝒄𝒖′(𝒂𝟎)
=
𝒊𝒌𝒂𝟎 + (𝒌𝒂𝟎)

𝟐

𝟏 + (𝒌𝒂𝟎)
𝟐

𝒂𝟎𝝎

𝒄
= 𝒌𝒂𝟎 ≪ 𝟏

𝑎0

𝒓

𝑽
𝒖′

Radiated acoustic power proportional to

𝑰 =< 𝒑′ 𝒖′ >∝ 𝒌𝒂𝟎
𝟒

Radiated power proportional to real part of impedance.
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Source of sound

-Sound source

in musical box Vibrating rod
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Source of sound (Wall vibration)

-Sound source

in musical box is very 

inefficient.

-Why?
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Making waves
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Making waves -
+
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Making waves

-
+
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Making waves -
+

Dipole sound source:
Two monopoles in proximity oscillating in opposite phase

+

− +

−

+

−
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Two monopoles oscillating in opposite phase => Dipole  (wiki)
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Two monopoles oscillating in opposite phase => Dipole  (wiki)

𝑝′ = 0
+

−
𝒂𝟎
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Two monopoles oscillating in opposite phase => Dipole  (wiki)

𝑝′ = 0

𝑝′ ≠ 0

+

−
𝒂𝟎
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Two monopoles oscillating in opposite phase => Dipole  (wiki)

𝑝′ = 0

𝑝′ ≠ 0

+

−
𝒂𝟎

Directivity

of amplitude
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Two monopoles oscillating in opposite phase => Dipole  (wiki)

𝑝′ = 0

Radiated acoustic power

in free space 

proportional to 𝒌𝒂𝟎
𝟔.

+

−
𝒂𝟎

35



Two monopoles oscillating in opposite phase => Dipole  (wiki)

𝑝′ = 0

Radiated acoustic power

in free space 

proportional to 𝒌𝒂𝟎
𝟔 +

−
𝒂𝟎
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Two monopoles oscillating in opposite phase => Dipole  (wiki)

𝑝′ = 0

Radiated acoustic power

in free space 

proportional to 𝒌𝒂𝟎
𝟔.

𝒂𝟎 = 𝟏𝒎𝒎, 
𝒄

𝒇
= 𝟑𝟎𝟎𝒎𝒎

𝟐𝝅𝒇 𝒂𝟎

𝒄

𝟔
~𝟏𝟎−𝟏𝟎 Difficult in free space!

+

−
𝒂𝟎
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Making waves -
+

𝑎0
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Making waves
-

+



 0
0

2 a
ka 

Moving faster decreases the wavelength
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Making waves



 0
0

2 a
ka 

Use your body to make strong waves
make 𝑎0 large

40



Source of sound

-Sound source

in musical box

Vibrating rod
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SOUNDBOARD
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Musical Instrument (wavelength order 0.3 m)

Sound board

source

resonator

Energy source

Resonator
(string)

Sound board

Bridge
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𝜕2𝑝′

𝜕𝑡2
− ∇2𝑝′ = −𝜵 ⋅ 𝒇 +
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𝑐0
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𝜕𝑝

𝜕𝑠 𝜌

𝜕2𝑠′

𝜕𝑡2

Non uniform force field.

𝒇 force density (per unit 

volume) exerted on fluid
Entropy production

(heat transfer, combustion)
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Study of sound production by flows and 

influence of flow on acoustic propagation.

-General theoretical background

-Whistling 

-Some applications to building acoustics
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Hydrodynamic instability of wake of a cylinder in cross flow
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http://www.onera.fr/photos-en/tunnel/images/255551-von-karman.jpg

)( vL


 Lift force:
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U

Dipole Source of Sound

+

-

Compression due to 
increased pressure

Expansion due to 
decreased pressure
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𝜕2𝑝′

𝜕𝑡2
− ∇2𝑝′ = −𝜵 ⋅ 𝒇 +

1

𝑐0
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𝜕𝑝

𝜕𝑠 𝜌

𝜕2𝑠′

𝜕𝑡2

Non uniform force field: walls!

Without walls: 

no dipole sound sources Entropy production

(heat transfer, combustion)
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Aeolian sound sources:
Voice of the wind

-The sound is produced by an unsteady flow 
without  wall vibration.
-Sound of wind in a forest…
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Whistling threes
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The whistling frequency f  is proportional 
to the flow velocity  U:

St =
fD

U
» 0.2Strouhal number

fr
e

q
u

e
n

cy

velocity
Estimate wind speed! 52



Hybrid approach

1) Calculate/estimate hydrodynamic force on object 
(ignoring the sound production)

2) Use hydrodynamic force to calculate the radiate sound field 
(ignoring the hydrodynamic flow)
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Break
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Hybrid approach and analogy

1) Calculate/estimate hydrodynamic force on object 
(ignoring the sound production)

2) Use hydrodynamic force to calculate the radiate sound field 
(ignoring the hydrodynamic flow)

Wave equation with sound source determined by force:
Aeroacoustic analogy (Gutin 1936, Curle 1955)
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Predicting sound radiation:

The most simple case 
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𝑐0
2

𝜕2𝑝′

𝜕𝑡2
− ∇2𝑝′ = −𝜵 ⋅ 𝒇 +
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𝑐0
2

𝜕𝑝

𝜕𝑠 𝜌

𝜕2𝑠′

𝜕𝑡2

𝒇 force per unit volume

pipe
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𝑐0
2

𝜕2𝑝′

𝜕𝑡2
− ∇2𝑝′ = −𝜵 ⋅ 𝒇 +

1

𝑐0
2

𝜕𝑝

𝜕𝑠 𝜌

𝜕2𝑠′

𝜕𝑡2

Low frequency 
𝜔𝑑

𝑐

2
≪ 1 : 

-far field plane waves 

-in source region 
𝟏

𝒄𝟎
𝟐

𝝏𝟐𝒑′

𝝏𝒕𝟐
≪ 𝜵𝟐𝒑′

𝑑
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∇2𝑝′ = ∇ ∙ ∇𝑝′ ≈ 𝜵 ⋅ 𝒇

Low frequency 
𝜔𝑑

𝑐

2
≪ 1 : 

𝑑
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∇𝑝′ ≈ 𝒇

Low frequency 
𝜔𝑑

𝑐

2
≪ 1 : 

𝑑
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𝒇𝒙𝑑 𝑉

𝑥 = −𝑑 𝑥 = +𝑑

Low frequency 
𝝎𝒅

𝒄

𝟐
≪ 𝟏 ⇒ Plane waves 𝒑′(𝒙, 𝒕)
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ම

𝑽

𝜵𝒑′𝒅𝑽 =
𝝅𝒅𝟐

𝟒
𝒑′ 𝒅, 𝒕 − 𝒑′(−𝒅, 𝒕) ≈ 𝑭𝒙 𝒕 ≡ම

𝑽

𝒇𝒙𝒅𝑽

𝑑 𝑉

𝑥 = −𝑑 𝑥 = +𝑑

Low frequency 
𝝎𝒅

𝒄

𝟐
≪ 𝟏
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∆𝒑 = 𝒑′ 𝒅, 𝒕 − 𝒑′(−𝒅, 𝒕) ≈
𝑭𝒙 𝒕

𝝅𝒅𝟐

𝟒

𝑑

𝑥 = −𝑑 𝑥 = +𝑑

𝒑′ 𝒅, 𝒕𝒑′(−𝒅, 𝒕)
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∆𝒑 = 𝒑′ 𝒅, 𝒕 − 𝒑′(−𝒅, 𝒕) ≈
𝑭𝒙 𝒕

𝝅𝒅𝟐

𝟒

𝑥 = −𝑑 𝑥 = +𝑑
∆𝒑(𝒕 −

𝒙
𝒄𝟎
)

𝟐

-
∆𝒑(𝒕+

𝒙

𝒄𝟎
)

𝟐
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Coherence of vortex shedding

Sound generated by cylinder fairly weak:
-dipole sound source
-limited coherence of vortex shedding
-effect of finite length…
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Effect of shape of cylinder/rod

For some geometries multiple wave structures are possible 
(stable/unstable)

66

Supression of wake instability

Square rod under 45𝑜 has a stable wake or
A von `Kármán vortex street depending on 
Initial flow conditions (upstream or downstream
Perturbation)

Cylinder, square rod
and plate at normal incidence
all display a von Kármán vortex street in the wake

Complex vortex shedding depending
on the angle of attack



Predicting low frequency broadband noise 
(air-conditioning duct):

Often scaling laws are useful for design.
These scaling laws are based on aeroacoustic

theory.
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Two monopoles oscillating in opposite phase

𝑝′ = 0

Radiated acoustic power
in free space 
proportional to 𝒌𝒂𝟎

𝟔.

+

−
𝒂𝟎
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𝑝′ = 0

Radiated acoustic power
in free space 
proportional to 𝒌𝒂𝟎

𝟔 ∝ 𝑴𝟔.
+

−
𝒂𝟎

69

𝒌 =
𝟐𝝅

𝝀
=
𝟐𝝅𝒇

𝒄
= 2𝜋

𝑆𝑡

𝐷

𝑼

𝒄



Failure of the two-step procedure
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Coupling with mechanical vibration

(Aeolian harp legend of David)
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𝑼
Grazing flow

Bottle
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𝑼𝒐

u’

Coupling vortex shedding to acoustic
oscillation 
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Hydrodynamic instability 

(Amplifier)

Bottle resonance

(Filter)

Unsteady force

on wall

(sound source)

Perturbation 

of shear layer

(acoustic feedback)

Hydrodynamic modes
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Unsteady flow
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Oscillation frequency

fr
eq

u
en

cy

Grazing flow velocity

Acoustic 
resonance

Hydrodynamic 
instability

Stops whistling
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𝑼𝒐

u’

Monopole radiation
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Bottle Is acoustic mass-spring system

m

K
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Mass-spring system

0S

effL
V 00 SLm eff
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Mass-spring system

0S

effL
V 00 SLm eff

Kinetic energy outside the neck not negligible

𝑳𝒆𝒇𝒇 takes inertia outside the neck into account
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Effective resonator-pipe length
is larger than neck length (Bernoulli).

The acoustic flow does not stop at the end of 
the pipe !
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Mass-spring system

0S

effL
V 00 SLm eff

𝐾 = 𝜌0𝑐0
2 𝑆0

2

𝑉

𝝎 = 𝟐𝝅𝒇 =
𝑲

𝒎
= 𝒄𝟎

𝑺𝟎
𝑽𝑳𝒆𝒇𝒇
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𝑼𝒐

u’

Amplitude prediction?
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C2

C3

C4

0.2 0.4 0.6
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𝑺𝒓 =
𝒇𝑫

𝑼𝟎

u
’ 
/ 

U
0

D

Ratio acoustic velocity in neck / grazing flow velocity
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Oscillation frequency

fr
eq

u
en

cy

Grazing flow velocity

Acoustic 
resonance

Hydrodynamic 
instability

Stops whistling
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Hydrodynamic instability 

(Amplifier)

Bottle resonance

(Filter)

Unsteady force

on wall

(sound source)

Perturbation 

of shear layer

(acoustic feedback)

Hydrodynamic modes
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NON-LINEAR AMPLITUDE SATURATION
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U
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Ratio acoustic velocity in neck / grazing flow velocity
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Wind organ pipes

89



Study of sound production by flows and 

influence of flow on acoustic propagation.

-General theoretical background

-Whistling 

-Some applications to building acoustics
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Corrugated pipes

 Usefulness:

Global flexibility & Local rigidity

 Applications

natural gas production

vacuum cleaners

ventilation systems

heat exchangers

 Problems:

Noise Environmental issue 

Vibration Structural problem
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Strouhal Number

W

upr

Sr =
(W + rup )

U T
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Acoustic Modes
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Dimensionless velocity M=U/c

𝑳

𝒄𝑻
=
𝒇𝑳

𝒄
=
𝒏

𝟐
, 𝒏 = 𝟏, 𝟐, 𝟑…

𝒑′ ≈ 0 𝒑′ ≈ 0
|𝒑′|(𝒙)



Vortex-Sound theory provides qualitative 
understanding 
(Powell 1964, Howe 1975/1980)
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Hidden resonators
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W. Hoffmans and K. Looijmans (1999)
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𝑼𝟎
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Resonator:

acoustical swing
Helmholtz resonator

Vortex shedding
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Whistling slits (windows/doors)

L= 5 cm    

Half wavelength resonance

c/f=L/2

f=3.4 kHz

D=0.1 cm

Optimal whistling:

Sr=fD/U=0.4 => U=9 m/s

=> Fresh breeze (5 on Beaufort scale)!

L

99



Radiation from open-open pipes

+ monopole

𝝀 =
𝟐𝑳

𝒏
𝒏 = 𝟏, 𝟐, 𝟑…

𝒂𝟎 pipe radius,  

𝒌 =
𝟐𝝅

𝝀

𝑳 length
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Radiation from open-open pipes

+ monopole

(𝒌𝒂𝟎)
𝟐 = 𝟎. 𝟏𝟏 𝟐 = 𝟏𝟎−𝟐

𝒂𝟎 = 𝟏𝟎𝒎𝒎 ,  

𝒌 =
𝟐𝝅

𝝀
=
𝝅𝒏

𝑳
𝒏 = 𝟏

𝑳 = 𝟑𝟎𝟎𝒎𝒎

𝑰 =< 𝒑′𝒖′ >∝ (𝒌𝒂𝟎)
𝟒
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Radiation from open-open pipes

+

+

-

+

-

-

+

monopole

dipole

quadrupole

𝑰 =< 𝒖′ 𝒑′ >∝ (𝒌𝒂𝟎)
𝟒

𝑰 =< 𝒖′ 𝒑′ >∝ (𝒌𝒂𝟎)
𝟖

𝑰 =< 𝒖′ 𝒑′ >∝ (𝒌𝒂𝟎)
𝟔
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Spruyt (1972)

Whistling protection grid of large ventilators

Bruggeman/Parchen 1990, Peutz 2008
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Spruyt (1972)

Roof of EXPO Rotterdam: 95 dB in building

Hofmans and Looijmans 1999, Peutz 2008

+

+
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+ +

- -

--

- -
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W.Hoffmans and K. Looijmans (1999)
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Parker modes in ducts 

+

-

'up

'dp

0U

No plane wave radiation, Watch out for 

splitter plates in air-conditioning ducts 106



Watch out for balcony balustrade design!

Peutz 2008
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Beetham Tower Manchester 
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https://youtu.be/UEuvqNFJ9EY

Whistling of Goldengate bridge (San Fransisco)

https://youtu.be/UEuvqNFJ9EY
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Mass-spring system

0S

effL
V

𝑉′ = 𝑆0𝑥
′

𝜌′

𝜌0
= −

𝑉′

𝑉
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Mass-spring system

0S

effL
V 00 SLm eff

𝐾 = 𝜌0𝑐0
2
𝑆0

2

𝑉

𝒎
𝒅𝟐𝒙′

𝒅𝒕𝟐
= −𝑲𝒙′
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Mass-spring system

0S

effL
V

𝐹′ = −𝐾𝑥′ =
𝜕𝑝

𝜕𝜌
𝑠

𝜌′𝑆0 = −𝑐0
2𝜌0

𝑉′

𝑉
𝑆0 = −𝑐0

2𝜌0
𝑥′𝑆0
𝑉

𝑆0

𝑉′ = 𝑆0𝑥
′

𝜌′

𝜌0
= −

𝑉′

𝑉

𝑲 = 𝝆𝟎𝒄𝟎
𝟐
𝑺𝟎

𝟐

𝑽
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