Sustainable combustion technologies need acoustics research

Maria Heckl Keele University, UK

m.a.heckl@keele.ac.uk

Overview

1. Introduction and background

2. Modelling combustion instabilities with the Green's function

3. Model predictions from my group – past and present

4. Conclusions

Overview

1. Introduction and background

2. Modelling combustion instabilities with the Green's function

3. Model predictions from my group - past and present

4. Conclusions

Sound plays a crucial role in combustion instabilities

Flames interact with sound → thermoacoustic instability

Flow perturbations interact with sound – demo: orifice tube

Multiple interactions with sound –

aeroacoustic instability

combustion instability

Where do combustion instabilities occur?

gas turbine engines

boilers

21 August 2022

InterNoise Glasgow

Where do combustion instabilities occur?

from: www.bgr.in/news/nasa-sends-three-smartphones nto-space-to-use-them-as-low-cost-satellites

furnaces

rockets

Combustion instabilities can occur whenever there is a continuously burning flame in a cavity.

Combustion instabilities can be destructive

Gas turbine damaged by a combustion instability

Instabilities tend to occur without warning

Possible triggers of a combustion instability:

- wear and tear over a long time
- noise
- change in ambient temperature
- other unknown factors ...

Generally: some change in condition – even a tiny change!

Low-pollution combustion systems are susceptible to combustion instabilities

Reduced-pollution combustion technologies

- use lean premixed flames
- burn at low temperatures
- use hydrogen-blend fuels

Zero-carbon combustion technologies

- use carbon-free fuels (hydrogen, ammonia)
- use biofuels

Benefits

- minimise CO₂ production
- minimise NO_x production

Problems

- risk of combustion instabilities
- flame flashback (for hydrogen)

Combustion systems and instability control strategies need to be re-designed for carbon-free fuels

What is a premixed flame?

Flame: visible part of an exothermic chemical reaction fuel + oxidizer \rightarrow combustion products + light

Premixed flame

- fuel and oxidizer are mixed prior to combustion
- combustion takes place in a thin interface

Flame sheet in a stationary premix

- S_L : laminar flame speed, depends on:
 - fuel type
 - fuel/oxidizer ratio

 S_L : laminar flame speed u: velocity of premix α : half-angle of flame kinematic balance: $u \sin \alpha = S_L$

A stationary flame adjusts its angle to the velocity ratio $\frac{O_L}{u}$ increase in $S_L \rightarrow$ increase in $\alpha \rightarrow$ flame becomes flatter increase in $u \rightarrow$ decrease in $\alpha \rightarrow$ flame becomes longer

Bunsen-burner flame in a vorticity field

flame surface area ~ heat release rate

21 August 2022

InterNoise Glasgow

Overview

1. Introduction and background

2. Modelling combustion instabilities with Green's function

3. Model predictions

4. Conclusions

Outline of mathematical modelling approach

Separate combustion system into two elements:

combustion system = acoustic resonator + unsteady flame

Acoustic resonator:

modelled by tailored Green's function

Unsteady flame:

modelled by amplitude-dependent transfer function

The two elements are then combined by a Green's function approach

The tailored Green's function describes the acoustic resonator

Acoustic resonator and its tailored Green's function

- - \Re observer, measuring response at point x and time t

Physical name: impulse response of the resonator Mathematical name: tailored Green's function

21 August 2022

Glasgow pptx5.cd

The tailored Green's function is a superposition of modes

General form of the tailored Green's function:

$$G(x, x^*, t - t^*) = \begin{cases} 0 & \text{before the impulse} \\ \sum_{n=1}^{\infty} g_n(x, x^*) e^{-i(\omega_n)(t - t^*)} & \text{after the impulse} \\ Green's function & eigenfrequencies of \\ acoustic resonator \end{cases}$$

Superposition of modes n

 $g_n(x, x^*)$ and ω_n can be

- calculated analytically for quasi-1D geometries
- measured for any geometry

The unsteady flame is modelled as an input/output system

Flame response in the frequency domain

$\mathcal{T}(\omega, A)$ can be

- calculated analytically for linear laminar flames
- calculated numerically (low effort) from level-set approach
- calculated numerically (high effort) from combustion CFD
- measured for many flames

Time-domain description of the flame

Flame response in the time domain

Green's function approach combines resonator and flame

Overview

1. Introduction and background

2. Modelling combustion instabilities with the Green's function

3. Model predictions from my group – past and present

4. Conclusions

Prediction of limit cycle amplitude and hysteresis with Alessandra Bigongiari

Acoustic resonator: tube with open ends amplitude-dependent Flame: described by nonlinear time-lag law $\frac{Q'(t)}{\overline{Q}} = n_1 \frac{u'_q(t-\overline{z})}{\overline{u}} - n_0 \frac{u'_q(t)}{\overline{u}}$

Prediction of limit cycle amplitude and hysteresis with Alessandra Bigongiari

further details in: Bigongiari, A. & Heckl, M.A. (2016) A Green's function approach to the rapid prediction of thermoacoustic instabilities in combustors. *Journal of Fluid Mechanics* 798, 970-996.

Instability and flashback for hydrogen flames with Sreenath M. Gopinathan

Flame:

 H_2 - enriched methane flame with laminar flame speed S_1 depending on equivalence ratio ϕ and H₂-concentration x_{H_2}

 S_1 increases dramatically at high H₂ concentrations

Instability and flashback for hydrogen flames with Sreenath M. Gopinathan

Impulse response of flame

3-D map for stability and flashback

further details in:

Gopinathan, S.M., Surendran, A. & Heckl, M.A. (2021) Effect of equivalence ratio on stability and flashback of combustion systems using hydrogen-blended fuels. *Proceedings of the Symposium on Thermoacoustics in Combustion: Industry meets Academia (SoTiC* 2021), Munich, Germany, 6-10 September 2021

Passive instability control in a boiler with Aswathy Surendran

Heat sink

modelled in terms of heat transfer function, calculated by CFD

Sound scatterer modelled in terms of scattering matrix, calculated analytically with quasi-steady approach

Passive instability control in a boiler with Aswathy Surendran

further details in: Surendran, A., Heckl, Maria, Hosseini, N. and Teerling, O.J. (2018) Passive control of instabilities in combustion systems with heat exchanger. International Journal of Spray and Combustion Dynamics, Vol. 10(4), pp. 362-379.

21 August 2022

InterNoise Glasgow

Effects of noise on instabilities with Sadaf Arabi

Acoustic resonator: tube with open ends amplitude-dependent Flame: described by nonlinear time-lag law $\frac{Q'(t)}{\overline{Q}} = n_1 \frac{u'_q(t-\overline{\tau})}{\overline{u}} - n_0 \frac{u'_q(t)}{\overline{u}}$

Noise: pink noise, level measured by β

Stability map:

further details in: Arabi, S. and Heckl, Maria (2022) The effects of different types of noise on thermoacoustic systems using a Green's function approach. *Proceedings of the InterNoise 2022*, to be held 21-24 August 2022, Glasgow, UK.

Effects of noise on instabilities with Sadaf Arabi

Time histories with different levels of noise

The POLKA project

POLKA: POLlution Knowhow and Abatement funded by: Horizon 2020 (Marie-Curie ITN) total budget: €4.02 million duration: 2019 – 2023 (4.5 years) POLKA website <u>https://polka-eu.org/</u>

16 network partners (across Europe and India)

15 PhD positions

POLKA logo:

POLKA aims: gain insight into H₂ combustion instabilities POLKA session at InterNoise: Tuesday, 23/08, 08:00 – 10:20

Overview

1. Introduction and background

2. Modelling combustion instabilities with the Green's function

3. Model predictions from my group – past and present

4. Conclusions

Conclusions

The Green's function gives physical insight into:

- nonlinear dynamics (limit cycles, hysteresis, ...)
- instability and flashback of hydrogen flames
- potential strategies to control combustion instabilities
- noise effects on combustion instabilities

Very useful modelling tool!

Sound plays a key role in combustion instabilities

Sustainable combustion technologies need acoustics research!

Thank you!

Maria Heckl School of Chemical and Physical Sciences Keele University Staffordshire ST5 5BG, U.K.

m.a.heckl@keele.ac.uk