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ABSTRACT
Clean combustion, such as hydrogen combustion for the reduction of NOx emissions, is prone to
thermo-acoustic instabilities which may cause structural vibrations and equipment failures. In
the present work, an adjoint-based sensitivity analysis is applied to a low-order thermo-acoustic
model. A structural sensitivity analysis is conducted first to evaluate the effects of a generic feedback
mechanism on eigenvalues of concern. It is found that the most stabilizing feedback mechanism is the
addition of mass, in a quantity which is proportional to the pressure perturbation right downstream
of the flame. Sensitivity of the eigenvalues to base flow modifications is also assessed. Such analyses
provide gradient information for optimization techniques to mitigate or cancel such instabilities with
quick and low-cost calculations.

1. INTRODUCTION

The problem of thermo-acoustic (TA) instabilities arose with the invention of premixed
combustors, designed to reduce pollution and exhaust gases. However, such systems are susceptible
to destructive coupling between unsteady heat release and acoustic pressure oscillations. A wide
variety of combustion systems, from domestic burners to rocket engines, suffers of such TA
instabilities, which may cause structural vibrations and equipment failures [1]. TA behavior is
sensitive to various parameters such as operating point, fuel composition, geometrical features, etc.
Multiple research areas such as fluid mechanics, heat transfer, and acoustic wave propagation are
used to model TA systems. Therefore, the phenomenon is difficult to predict and the engineering
approach to eliminate it is typically expensive.

The adjoint-based approach is a powerful tool for tackling stability, receptivity, and sensitivity
problems in fluid dynamics. Comparing with the traditional finite-difference approach, the adjoint
method is more cost-friendly and effective in the analysis of a system which depends on many
parameters. Giannetti and Luchini [2] conducted structural sensitivity of the flow around a cylinder
and identified how to optimally position a small control cylinder to suppress the von Kaŕmań vortex
street. Marquet et al. [3] investigated the sensitivity of eigenvalue to base-flow modifications and to
a steady force. The former analysis identified the regions where base flow can affect the onset of
instability. The latter analysis gave predictions of possible passive control methods to suppress the
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shedding. Adjoint sensitivity analysis has also been used in shape optimization of TA systems such
as the Rijke tube, swirl combustors [4], and low-order models [5]. The structural sensitivity and base-
state sensitivity analyses have been applied to TA systems such as the Rijke tube [6] and wave-based
low-order models [7].

The main aim of this paper is to apply the adjoint sensitivity approach to the premixed combustor
model described by Dowling and Stow [8], using a low-order, lumped modelling approach. The
paper consists of three parts: in section 2, we apply the low-order modelling approach to the one-
dimensional TA system and solve the eigenvalue problem to predict resonant modes. The predictions
obtained are validated with results from the literature. In section 3, the adjoint equations are derived
from the governing base flow and perturbation equations. The adjoint eigenproblem is solved with
the same numerical strategy as the direct problem. In section 4, structural and base-state sensitivities
are computed, with a focus on the most unstable eigenmode. Section 5 presents the main conclusions
of the work.

2. THE ONE-DIMENSIONAL PREMIXED COMBUSTOR MODEL

2.1. General Description
The system examined in this work is a one-dimensional TA model from Dowling and Stow [8].

As shown in Fig. 1, the model consists of a plenum, a premix duct and a combustion chamber. The
dimensions of the model are given in Table 1. The system has a chocked inlet and an open outlet.

The flame is consider as a thin flame sheet at the intersection between the premixer and the
combustion chamber. The chemical reactions are considered as instantaneous; therefore, the flame
model is introduced as a jump conditions instead of as a source term in the governing equations.
In each duct, the flow variables are decomposed into base flow plus perturbation, viz. p = p̄ + p′,
u = ū + u′, ρ = ρ̄ + ρ′. The governing equations for the base flow and the perturbations are Eqs. (1)
and (2), respectively, with γ = Cp/Cv the specific heat ratio:

ρ̄
dū
dx
+ ū

dρ̄
dx
= 0, (1a)

ρ̄ū
dū
dx
+

dp̄
dx
= 0, (1b)

ū
dp̄
dx
+ γ p̄

dū
dx
= 0. (1c)

∂ρ′

∂t
+ ū
∂ρ′

∂x
+ ρ̄
∂u′

∂x
= 0, (2a)

ρ̄
∂u′

∂t
+ ρ̄ū
∂u′

∂x
+
∂p′

∂x
= 0, (2b)

∂p′

∂t
+ ū
∂p′

∂x
+ γ p̄

∂u′

∂x
= 0. (2c)

2.2. The TALOM approach
The system is solved as an eigenvalue problem in the complex domain using an approach

denominated TALOM (Thermo-Acoustic Low-Order Modelling). This is a lumped approach which
expresses the system through a set of suitable equations deduced from boundary and jump conditions.

First, the base flow is computed. We consider the mean flow parameters to be uniform throughout
each of the three ducts. Therefore, in the combustion chamber section, the mean flow temperature
is the same as the flame temperature T f . The unknowns for the mean flow problem are: the mean



Figure 1: Sketch of the three-duct combustion model.

Table 1: Geometrical parameters of the premixed combustor model.

Description Symbol Value

Plenum cross-sectional area a1 0.0129 m2

Plenum length l1 1.7 m

Premixer cross-sectional area a2 0.00142 m2

Premixer length l2 0.0345 m

Combustion chamber cross-sectional area a3 0.00385 m2

Combustion chamber length l3 1.0 m

heat release rate Q̄, plus ρ̄, ū, p̄, T̄ in each duct. To close the problem, a perfect gas state equation,
p̄ = ρ̄RgT̄ , is applied in each duct, with Rg the perfect gas constant. The mass, momentum, and energy
conservation conditions are applied at each intersection. For a sectional area increase a Borda-like
equation is applied, while for a sectional area decrease the isentropic condition is imposed. The input
parameters for the mean flow calculation are:

m̄1 = 0.05 kg/s, T̄1 = 300 K, p̄3 = 101000 Pa, T̄3 = T f = 2000 K. (3)

The perturbation equations are solved in a similar manner after converting the variables in the
frequency domain:

p′(x, t) = p̂(x)eiωt, u′(x, t) = û(x)eiωt, ρ′(x, t) = ρ̂(x)eiωt, (4)

whereω = ωr+iωi is the complex frequency with the real part (ωr) representing the angular frequency
of the oscillation and the negative imaginary part (−ωi) representing the growth rate. Furthermore,
any disturbance can be decomposed as the sum of acoustic, entropy, and vorticity disturbances [9],
with the three contributions independent of one another. For the one-dimensional case, the vorticity
disturbance is not considered. Consequently, the perturbations are decoupled as:

p̂(x) = A+eik+x+A−eik−x, ρ̂(x) =
1
c̄2 A+eik+x+

1
c̄2 A−eik−x−

1
c̄2 Aeeik0 x, û(x) = −

k+
ρ̄α+

A+eik+x−
k−
ρ̄α−

A−eik−x,

(5)
where A+ and A− are the amplitudes of forward- and backward-travelling acoustic waves, respectively,
Ae is the amplitude of the entropy wave and c̄ =

√
(∂p/∂ρ)s is the speed of sound. The dispersion

relations are k± =
M̄ω ∓ |ω|
c̄(1 − M̄2)

, k0 = −
ω

ū
, and α± = ω + ūk±, with M̄ = ū/c̄ the Mach number.



The first-order linearized jump conditions at the duct intersections are given next. At the position
x = l1, they are:

a1 (ρ̄1û1 + ρ̂1ū1) = a2 (ρ̄2û2 + ρ̂2ū2) , γ
ρ̂1

ρ̄1
−

p̂1

p̄1
= γ
ρ̂2

ρ̄2
−

p̂2

p̄2
, cpT̂1 + ū1û1 = cpT̂2 + ū2û2. (6)

At x = l2:

a2 (ρ̄2û2 + ρ̂2ū2) = a3 (ρ̄3û3 + ρ̂3ū3) , (7a)

a2ρ̂2ū2
2 + 2a2ρ̄2ū2û2 = a3 ( p̂3 − p̂2) + a3ρ̂3ū2

3 + 2a3ρ̄3ū3û3, (7b)

a2

(
ρ̄2ū2Ĥ2 + ρ̄2û2H̄2 + ρ̂2ū2H̄2

)
= a3

(
ρ̄3ū3Ĥ3 + ρ̄3H̄3û3 + ū3H̄3ρ̂3 − Q̂

)
, (7c)

with the unsteady heat release rate Q̂ defined by,

Q̂ = −κQ̄
m̂2

m̄2
e−iωτ. (8)

The parameter κ is used to switch on or off the heat release term; H = 1
2u2 + CpT is the specific

enthalpy. The boundary conditions of the choked inlet (x = 0) and open-pressure outlet (x = l3) are:

ρ̂1(0)
ρ̄1
+

û1(0)
ū1
= 0, p̂1(0) = c̄2

1ρ̂1(0), p̂3(l3) = 0. (9)

Note that, to close the problem, the isentropic condition, Eq. (9)-middle, at x = 0 has been introduced.
The governing equations of the system are written in matrix form, Aq = 0, where q is the vector
consisting of the decoupled independent amplitudes of acoustic and entropy waves (A+, A−, Ae) in
each duct and A is the coefficient matrix. This eigenvalue problem is solved by the inverse iteration
algorithm [2]. The mode shapes of the state variables are then reconstructed by the use of Eq. (5).

The spectrum of resonant modes is shown in Fig. 2 and is compared with Dowling and Stow’s
result. The spectrum captures well the frequencies of the dominant modes. Although the growth
rate values do not coincide for all modes, the shapes of the perturbations agree well. The asymptotic
behavior of the system is dominated by the least stable eigenmode, that of largest growth rate.

Figure 2: Comparison of eigenvalue spectrum with results by Dowling and Stow [8], with (a) and
without (b) unsteady heat release at the flame. The mode of largest growth rate is marked as N; its
frequency is 169.5 Hz



3. ADJOINT EQUATIONS

There are two ways to perform the adjoint analysis: continuous adjoint (CA) and discrete adjoint
(DA). The difference between these two approaches is the order in which the adjoint equations are
derived and discretized. In this paper, we only show the derivation of the CA approach, i.e. the adjoint
equations are first derived and their discretization is carried out afterwards.

To build the adjoint eigenvalue problem for the model, we first define the following inner products:
(1) For functions a(x) and b(x):

⟨a(x), b(x)⟩ =
∫ l−1

0
a(x)∗b(x)dx +

∫ l−2

l+1

a(x)∗b(x)dx +
∫ l3

l+2

a(x)∗b(x)dx. (10)

(2) For non-spatial functions a and b:

{a, b} = a∗b. (11)

The symbol * denotes the complex conjugate. A set of adjoint variables (Lagrange multipliers) is
introduced by defining a Lagrangian functional L which contains the constraints. For our problem,
this functional is defined as:

L ≡ ω −
〈
ρ̂†, E1

〉
−

〈
û†, E2

〉
−

〈
p̂†, E3

〉
−

{
f̂ †1 , J1

}
−

{
f̂ †2 , J2

}
−

{
f̂ †3 , J3

}
−

{
f̂ †4 , J4

}
−

{
f̂ †5 , J5

}
−

{
f̂ †6 , J6

}
−

〈
R†, B1

〉
−

〈
U†, B2

〉
−

〈
P†, B3

〉
−

{
h†1, I1

}
−

{
h†2, I2

}
−

{
h†3, I3

}
−

{
h†4, I4

}
−

{
h†5, I5

}
−

{
h†6, I6

}
,

(12)
where E, J, B, and I represent the perturbation equations, the perturbation jump conditions, the base
flow equations, and the base flow jump conditions, respectively. The adjoint variables introduced for
the perturbation equations are ρ̂†, û†, p̂†; for the unsteady flow jump conditions they are f̂ †i , i = 1, ...6;
for the base flow governing equations they are R†, U†, P†; for the base flow jump conditions they are
h†i , i = 1, ...6.

3.1. Adjoint Perturbation Equations
The unsteady flow governing equations in the frequency domain are:

E1 ≡ iωρ̂ + ū
dρ̂
dx
+ ρ̄

dû
dx
= 0, (13a)

E2 ≡ iωρ̄û + ρ̄ū
dû
dx
+

dp̂
dx
= 0, (13b)

E3 ≡ iω p̂ + ū
d p̂
dx
+ γ p̄

dû
dx
= 0. (13c)

Applying integration by parts in Equation 12 and collecting the derivatives of the Lagrangian with
respect to the direct perturbation variables (p̂, û, ρ̂) produces the adjoint disturbance equations:

iω∗ρ̂† + ū
dρ̂†

dx
= 0, (14a)

iω∗ρ̄û† + ρ̄ū
dû†

dx
+ ρ̄

dρ̂†

dx
+ γ p̄

d p̂†

dx
= 0, (14b)

iω∗ p̂† + ū
d p̂†

dx
+

dû†

dx
= 0. (14c)

Organizing the boundary terms generated from integration by parts, we obtain the boundary
conditions (Eq. 15) and the jump conditions (Eq. 16) of the adjoint system:

û†1(0) = 0, ρ̂†3(l3) = 0, ū3û†3(l3) + c̄2
3 p̂†3(l3) = 0. (15)



ū1ρ̄1[a1ρ̂
†

2(l1) − a2ρ̂
†

1(l1)] = γ(a2ū2 p̄2 − a1ū1 p̄1) p̂†2(l1), (16a)

a1ρ̄1[
1
a2
ρ̂†2(l1) −

1
a1
ρ̂†1(l1)] + ū1[ρ̄2û†2(l1) − ρ̄1û†1(l1)] + a1ρ̄1[

1
a2

c̄2
2 p̂†2(l1) −

1
a1

c̄2
1 p̂†1(l1)] = 0, (16b)

p̄2 − ρ2c̄2
1

1 − γ
û†2(l1) − p̄1û†1(l1) + ū2 p̄2 p̂†2(l1) − ū1 p̄1 p̂†1(l1) = 0, (16c)

a2[
1
a3
ρ̂†3(l2) −

1
a2
ρ̂†2(l2)] =

a2

a3
(ū3 − ū2)û†3(l2) + [

a2

2a3
(ū3 − ū2)2 −

κQ̄
ū2ρ̄2

eiω∗τ](1 − γ) p̂†3(l2), (16d)

a3ρ̂
†

2(l2) − a2ρ̂
†

3(l2) + a3ū2û†2(l2) + a2ū3û†3(l2) − 2a2ū2û†3(l2) + a3c̄2
2 p̂†2(l2) − a2c̄2

2 p̂†3(l2)

= (γ − 1)p̂†3(l2)[a2(
1
2

ū2
3 − 2ū2ū3 +

3
2

ū2
2) − a3

κQ̄
ρ̄2ū2

eiω∗τ],
(16e)

û†3(l2) − û†2(l2) + [
a2

a3
γū2 + (1 − γ)ū3] p̂†3(l2) − ū2 p̂†2(l2) = 0. (16f)

The jump conditions for f̂ †i are reported in the Appendix. Using the adjoint jump and boundary
conditions, the adjoint eigen-problem is again solved by the inverse iteration algorithm. The spectrum
of adjoint eigenvalues satisfies the bi-orthogonality condition, i.e., it is the complex conjugate of the
direct spectrum [10]. The eigenvector contains the amplitudes of adjoint acoustic waves (A†+, A†−) and
adjoint entropy waves (A†e); they are used to reconstruct the shapes of the adjoint modes as:

p̂† = A†+e
ik†+x + A†−e

ik†−x + A†eeik†0 x, ρ̂† = −c̄2A†eeik†0 x, û† = −
k†+c̄2

α†+
A†+e

ik†+x −
k†−c̄2

α†−
A†−e

ik†−x, (17)

together with the relations:

k†± =
M̄ω∗ ∓ |ω∗|
c̄(1 − M̄2)

, k†0 = −
ω∗

ū
, α†± = ω

∗ + ūk†±. (18)

The derivative of the Lagrangian functional with respect to the eigenvalue provides the
normalization condition (Eq. 19), which is used to normalize the adjoint variables after reconstruction:〈

ρ̂†, ρ̂
〉
+

〈
û†, ρ̄û

〉
+

〈
p̂†, p̂

〉
+

{
f̂ †6 ,−a3κτQ̄(

û2(l2)
ū2
+
ρ̂2(l2)
ρ̄2

)e−iωτ

}
= 1. (19)

The shapes of the state variables of the direct system and of the the adjoint variables for the
predominant mode at f = 169.5 Hz are shown in Fig. 3. The amplitude of the adjoint mode shapes
provides the receptivity of the system to a forcing term in the corresponding balance equation. Larger
amplitudes indicate that the system is more easily controllable.

3.2. Adjoint Base Flow Equations
In this section, we consider the base flow variables as the superposition of the base flow solution

plus an infinitesimal generic disturbance, i.e. ρ̄ = ρ̄0+δρ̄ , ū = ū0+δū, and p̄ = p̄0+δp̄. For simplicity,
from now on, we omit the subscript "0" from the base flow variables. Before applying the Lagrangian
functional, the governing equations and jump conditions must be first linearized around the base flow
parameters. The linearized base flow governing equations are:

B1 ≡ δρ̄
dū
dx
+ ρ̄

dδū
dx
+ ū

dδρ̄
dx
+ δū

dρ̄
dx
= 0, (20a)

B2 ≡ δρ̄ū
dū
dx
+ ρ̄δū

dū
dx
+ ρ̄ū

dδū
dx
+

dδ p̄
dx
= 0, (20b)

B3 ≡ δū
dp̄
dx
+ ū

dδp̄
dx
+ γδp̄

dū
dx
+ γ p̄

dδū
dx
= 0. (20c)



Figure 3: (a)-(c) Mode shapes of direct and adjoint variables for the resonant mode with f = 169.5
Hz. The direct perturbations are normalized by the maximum û component. The adjoint variables
are normalized using Eq. (19). | p̂†| and |û†| represents the amplitudes of the receptivity of energy and
momentum equation, respectively. (d) Amplitude of the receptivity of the continuity equation.

Applying the inner products and integration by parts, the derivatives of the Lagrangian functional
with respect to the direct base flow modifications (δρ̄, δū, δ p̄), produce the adjoint base flow equations:

ū
dR†

dx
= û†(iω∗)û∗ + (ρ̂† + û†û∗)

dû∗

dx
(21a)

ρ̄
dR†

dx
+ ρ̄ū

dU†

dx
+ γ p̄

dP†

dx
= ρ̂†

dρ̂∗

dx
+ û†ρ̄

dû∗

dx
+ p̂†

d p̂∗

dx
(21b)

dU†

dx
+ ū

dP†

dx
= γ p̂†

dû∗

dx
(21c)

By a similar procedure it is easy to recover the jump conditions of the adjoint base flow:[
ū2a2

2ū1a1
(ū2

1 − ū2
2) +

c̄2
1

γ − 1

(
ū2a2

ū1a1
−
ρ̄1

ρ̄2

)]
U†1(l1) +

a2

a1
c̄2

1

(
ρ̄1

ρ̄2
ū1 − ū2

)
P†1(l1) +

a2

a1
ū2R†1(l1) = ū2R†2(l1),

(22a)

a2

a1

[
2(c̄2

2 − c̄2
1) + (γ − 1)(3ū2

2 − ū2
1)

2(γ − 1)ū1
U†1(l1) + c̄2

1P†1(l1) + R†1(l1)
]
= ū2U†2(l1) + c̄2

2P†2(l1) + R†2(l1), (22b)(
γ

ū2a2

ū1a1
−

p̄1

p̄2

)
1
γ − 1

U†1(l1) +
p̄1

p̄2
ū1P†1(l1) = U†2(l1) + ū2P†2(l1), (22c)

2a3c̄2
2(ū3 − ū2) + (1 − γ)ū2a3(ū3 − ū2)2

2a3(c̄2
2 − ū2

2) + 2γū2
2(a3 − a2)

[U†2(l2) + ū2P†2(l2)] +
a3

a2
R†2(l2) = R†3(l2), (22d)



2a3(2ū3c̄2
2 − ū2c̄2

3 − ū2c̄2
2) + (1 − γ)a3ū2(ū3 − ū2)(3ū3 − ū2)

2a3(c̄2
2 − ū2

2) + 2γū2
2(a3 − a2)

[U†2(l2) + ū2P†2(l2)] +
a3

a2
R†2(l2)

= ū3U†3(l2) + c̄2
3P†3(l2) + R†3(l2),

(22e)

a3(c̄2
2 − ū2

2) + γa3ū2(ū2 − ū3)
a3(c̄2

2 − ū2
2) + γū2

2(a3 − a2)
[U†2(l2) + ū2P†2(l2)] = U†3(l2) + ū3P†3(l2), (22f)

and the boundary conditions:

U†1 + P†1ū1 = 0, (23a)

U†3 + P†3ū3 = 0, (23b)

R†1 + ū1U†1 + c̄2
1P†1 = 0, (23c)

R†3 + ū3U†3 + c̄2
3P†3 = 0. (23d)

The adjoint variables of the base flow jump conditions (h†i ) are shown in the Appendix. Using the
same routine for solving the mean flow, the adjoint base flow variables, U†, R†, and P† can be solved.

4. SENSITIVITY ANALYSIS

We use ê† to denote the vector of adjoint perturbation variables (ρ̂†, û†, p̂†), and use b† to denote
the vector of adjoint base flow variables (R†, U†, P†). The Lagrangian functional can be written in
compact form:

L = ω− < ê†, E > −{ f̂ †, J}− < b†, B > −{h†, I}. (24)

By setting the derivatives of the Lagrangian functional L with respect to the generic parameter s to
zero, the derivative of the eigenvalue with respect to different control parameters of interest can be
calculated. It is thus found:

∂ω

∂s
=
∂

∂s
< ê†, E > +

∂

∂s
{ f̂ †, J} +

∂

∂s
< b†, B > +

∂

∂s
{h†, I}. (25)

Next, the structural sensitivity and the base-state sensitivity of the system are evaluated.

4.1. Structural Sensitivity Analysis
In this section we evaluate how the general feedback mechanisms proportional to the state variables

applied at position x = x0 will influence the linear stability of the system. An important assumption
here is that the feedback mechanisms do not alter the base flow. The feedback mechanisms generating
mass addition, momentum addition, and energy addition to the system are denoted asMρ,u,p, Fρ,u,p,
Qρ,u,p, where the subscripts ρ, u, and p denote a feedback forcing proportional, respectively, to
the perturbation state variable ρ̂, û, and p̂. In total we have nine different structural perturbations.
Any general feedback mechanism can be seen as the linear combination of these nine structural
perturbations. The resulting eigenvalue drift is the sum of the eigenvalue drift caused by each
individual structural perturbation. They are thus examined separately. For instance, the momentum
addition to the system proportional to the pressure perturbation located at x = x0 takes the form:

iωρ̄û + ρ̄ū
dû
dx
+

dp̂
dx
= Fp p̂ δ(x − x0), (26)

where δ(x − x0) is the Dirac delta function.
For the continuity equation (E1) the receptivity to forcing terms is ρ̂† + c̄2 p̂†; for the momentum

equation (E2) it is û†; for the energy equation (E3) it is p̂†. The structural sensitivity is calculated as



the inner product of receptivity and direct functions. For the case in Eq. (26), the sensitivity of the
eigenvalue ω with respect to the feedback mechanism Fp is:

δω

δFp
= û†∗(x0)p̂(x0). (27)

In the same way, the sensitivity functions to other feedback mechanisms can be obtained. The real
part of the function is the sensitivity of the angular frequency and the negative imaginary part is the
sensitivity of the growth rate. The growth rate shift can affect the stability of the system; the structural
sensitivity of the growth rate to the nine feedback mechanisms are shown in Fig. 4.

Figure 4: Sensitivity of the growth rate (−ωi) to generic feedback mechanism proportional to the
perturbations.

The positive sensitivity of the growth rate indicates a destabilization effect. For our system,
generally, all feedback mechanisms introduced in the plenum section have limited effects on the
system’s stability. The most stabilizing mechanism is identified as Mp located downstream of the
flame position. Adding mass in proportion to the pressure perturbations can be generated by a
Helmholtz resonator. Such mechanism placed in the combustion chamber section will stabilize the
system. The closer the Helmholtz resonator is located to the flame region, the more effective is the
stabilization mechanism. For the feedback mechanismMu the effect is mostly destabilizing.

The stabilizing momentum addition mechanism is identified for Fp placed within the section of
x = [0, 0.7] ∩ [1.2, l−1 ] ∩ [1.8, l3]. The most efficient position is at x = 2.3. For Fu acting in the
premixer destabilization occurs while an action in the combustion chamber will stabilize the system.
The most influential stabilizing effect is at the outlet.

For energy addition mechanisms, the effects on growth rate is limited when compared to the other
mechanisms. In particular, the effects of Qu and Qρ on the eigenvalue drift are negligible if they act
on the system with other feedback mechanisms. For Qp, the sensitivity behavior is similar to that of
Mp, i.e. Qp acting in the combustion chamber will stabilize the system.

4.2. Base-state Sensitivity Analysis
In this section we evaluate the eigenvalue shift due to arbitrary modifications in the base flow. The

derivatives of L to generic base flow variations (δū, δρ̄, δ p̄) give the adjoint base flow equations.



Figure 5: Sensitivity of the angular frequency (ωr) and of the growth rate (−ωi) to base flow
modifications δū, δρ̄, and δ p̄.

Since the adjoint variables are constant in each duct, the sensitivity of eigenvalues to generic base
flow modifications (δū, δρ̄, δ p̄) can be obtained explicitly from the RHS of Eq. (21), i.e.:

∂ω

∂ρ̄
= û†iω∗û∗ + (ρ̂† + û†û∗)

dû∗

dx
, (28a)

∂ω

∂ū
= ρ̂†

dρ̂∗

dx
+ û†ρ̄

dû∗

dx
+ p̂†

d p̂∗

dx
, (28b)

∂ω

∂ p̄
= γ p̂†

dû∗

dx
. (28c)

Fig. 5 shows the sensitivity of angular frequency and growth rate of the leading resonant mode N
to base flow modifications. It indicates how a generic base flow property increase would change the
stability of the system. The most destabilizing effect is found by varying the density at the premixer
section. In the combustion chamber, downstream of flame region, there is a slightly stabilizing effect
due to density increase up to x = 1.9, after which the destabilizing effect grows and peaks near
the outlet. For variations in base flow velocity, the most sensitive region for triggering an unstable
mode lies within the premixer section. The sensitivity of the leading eigenvalue to a pressure increase
appears to be small, with a mild stabilizing effect which can occur in the combustion chamber section.

5. CONCLUSIONS

This study aims to apply adjoint sensitivity analysis to a low-order TA model. The adjoint method
analyzes changes in the eigenvalues caused by multiple changes in the system.

An approach denominated TALOM is used to solve Dowling and Stow’s one-dimensional
premixed combustor model. The resonant modes are identified and corresponds qualitatively to those
given in [8]; the most unstable eigenmode of the TA system is found to occur at f = 169.5 Hz. The
adjoint equations are derived by the Lagrange multiplier approach, based on which the structural and
base-state sensitivities are calculated. For the structural sensitivity analysis, we evaluate the angular
frequency and growth rate shifts due to generic feedback mechanisms. The most stabilizing effect is



caused by adding mass in a quantity proportional to the local pressure perturbation next to the flame
sheet. For the base-state sensitivity, the variation in the leading eigenvalue is examined against mild
modifications in the base flow. The most effective base flow modification destabilizing the system is
a density increase in the premixer section.

In future work the adjoint sensitivity analysis will be extended to three-dimensional, annular TA
systems. Based on the sensitivity analysis outlined here, optimal flow control approaches will be
devised to eliminate thermo-acoustic instabilities.
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APPENDIX: ADJOINT VARIABLES FOR JUMP CONDITIONS

The adjoint variables for the unsteady jump conditions are,

f̂ †1 =
1
a2

[ρ̂†2(l1) + c̄2
2 p̂†2(l1)], (29a)

f̂ †2 =
1
γ − 1

p̄2û†2(l1) − ū2 p̄2 p̂†2(l1), (29b)

f̂ †3 = ρ̄2û†2(l1), (29c)

f̂ †4 =
1
a3

[ρ̂†3(l2) − ū3û†3(l2) +
γ − 1

2
ū2

3 p̂†3(l2)], (29d)

f̂ †5 =
1
a3

[û†3(l2) + (1 − γ)ū3 p̂†3(l2)], (29e)

f̂ †6 =
1
a3

(γ − 1)p̂†3(l2). (29f)

The adjoint variables for the base flow jump conditions are,

h†1 =
1
a1

[(
ū1

2
+

γ p̄1

(γ − 1)ū1ρ̄1
)U†1(l1) −

γ p̄1

ρ̄1
P†1(l1) − R†1(l1)], (30a)

h†2 = −
1

ū1a1
U†1(l1), (30b)

h†3 = ū1 p̄1P†1(l1) −
1
γ − 1

p̄1U†1(l1), (30c)

h†4 =
ū2[2c̄2

2 + (γ − 1)ū2
2][U†2(l2) + ū2P†2(l2)]

2a3[c̄2
2 + (γ − 1)ū2

2] − 2γa2ū2
2

−
1
a2

R†2(l2), (30d)

h†5 =
ū2(γ − 1)[U†2(l2) + ū2P†2(l2)]

a3[c̄2
2 + (γ − 1)ū2

2] − γa2ū2
2

, (30e)

h†6 =
[c̄2

2 + (γ − 1)ū2
2][U†2(l2) + ū2P†2(l2)]

a3[c̄2
2 + (γ − 1)ū2

2] − γa2ū2
2

. (30f)



REFERENCES

[1] Timothy C. Lieuwen and Vigor Yang. Combustion instabilities in gas turbine engines:
operational experience, fundamental mechanisms, and modeling. American Institute of
Aeronautics and Astronautics, 2005.

[2] Flavio Giannetti and Paolo Luchini. Structural sensitivity of the first instability of the cylinder
wake. Journal of Fluid Mechanics, 581:167–197, 2007.

[3] Olivier Marquet, Denis Sipp, and Laurent Jacquin. Sensitivity analysis and passive control of
cylinder flow. Journal of Fluid Mechanics, 615:221–252, 2008.

[4] Stefano Falco and Matthew P. Juniper. Shape optimization of thermoacoustic systems using a
two-dimensional adjoint helmholtz solver. Journal of Engineering for Gas Turbines and Power,
143(7), 2021.

[5] José G. Aguilar and Matthew P. Juniper. Shape optimization in low-order thermoacoustic
networks. In GPPS Forum, volume 18, pages 10–12, 2018.

[6] Luca Magri. Adjoint methods as design tools in thermoacoustics. Applied Mechanics Reviews,
71(2), 2019.

[7] José G. Aguilar, Luca Magri, and Matthew P. Juniper. Adjoint-based sensitivity analysis of
low-order thermoacoustic networks using a wave-based approach. Journal of Computational
Physics, 341:163–181, 2017.

[8] Ann P. Dowling and Simon R. Stow. Acoustic analysis of gas turbine combustors. Journal of
Propulsion and Power, 19(5):751–764, 2003.

[9] Boa-Teh Chu and Leslie S. G. Kovásznay. Non-linear interactions in a viscous heat-conducting
compressible gas. Journal of Fluid Mechanics, 3(5):494–514, 1958.

[10] Matthew P. Juniper. Adjoints and passive control in thermoacoustics. Combustion, 6(3):225–
246, 2015.


	INTRODUCTION
	The one-dimensional premixed combustor model
	General Description
	The TALOM approach

	Adjoint Equations
	Adjoint Perturbation Equations
	Adjoint Base Flow Equations

	Sensitivity Analysis
	Structural Sensitivity Analysis
	Base-state Sensitivity Analysis

	CONCLUSIONS

