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Thermoacoustic instabilities and aeroacoustic instabilities are due to feedback between acoustic field

and unsteady heat release or unsteady flow fluctuations. The Green’s function approach is a robust and

fast analytical tool to study self-excited acoustic oscillations in such systems. If the mean flow is in-

cluded, the reciprocity of the Green’s function is lost. This work aims to extend the framework of the

Green’s function approach for modelling thermoacoustic instabilities in the presence of mean flow by

demonstrating the symmetry of the Green’s function. The framework is applied to a one-dimensional

combustion system with a compact flame whose heat release rate is described by a generalized non-

linear time-lag law. Our extended Green’s function approach is able to capture the effect of mean flow

on the instabilities as well as the nonlinear dynamics of the system, showing that increasing the mean

flow can expand the stable region of the stability map.
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1. Introduction

Self-excited oscillations in thermoacoustic and aeroacoustic systems can cause damage to equipment

structures. The problem of thermoacoustic instability arose with the invention of premixed combustion

and hydrogen combustion for NOx emission reduction [1, 2, 3]. Aeroacoustic whistling is observed

in confined geometries and can be mitigated by using devices such as mufflers, perforated plates, and

Helmholtz resonators. Compared to experiments and CFD investigations, analytical models can capture

major properties of these phenomena and significantly reduce computational costs, such as low-order

network modeling [4, 5] and the Galerkin technique [6]. The Green’s function is a fast and robust tool

widely used in the study of wave propagation. It can express acoustic disturbances in the form of an

integral equation. In an unbounded space, the Green’s function is called the free-space Green’s function,

of which the analytical solution is known. In a confined space, the Green’s function satisfying certain

boundary conditions is called exact Green’s function or tailored Green’s function. [7] gave a summary of

the tailored Green’s function framework in the study of aerodynamics and thermoacoustic instabilities.

However, most investigations using Green’s function approach adopted the zero-Mach assumption, which

limits the versatility of the model.

This work aims to extend the tailored Green’s function approach to model the thermoacoustic insta-

bilities in a horizontal Rijke tube in the presence of a steady and uniform mean flow. We first illustrate
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a one-dimensional prototype thermoacoustic system. Second, we demonstrate the process to obtain the

integral governing equation of acoustic velocity fluctuation and the solution of the tailored Green’s func-

tion. We also calculate the linear stability for given initial conditions and heat source positions. Then,

some results of the nonlinear dynamics, hysteresis behavior, and the mean flow effect are discussed.

Finally, conclusions are given.

2. Problem description

The present work investigated a thermoacoustic system consisting of a one-dimensional horizontal

tube with a steady and uniform mean flow in the axial direction, and an unsteady heat source located at

xq. The acoustic field is governed by an inhomogeneous convected wave equation:

Lφ =
∂2φ

∂t2
+ 2ū

∂2φ

∂t∂x
+ (ū2 − c2)

∂2φ

∂x2
= −γ − 1

ρ̄
q, (1)

where L is the linear operator of φ in the convected wave equation, φ is the fluctuation of the velocity

potential, ū is the mean flow velocity, ρ̄ is the mean density of the fluid in the duct, c is the speed of sound,

and γ is the specific heat capacity ratio. q(x, t) is the volumetric unsteady heat release rate generated by

the heat source. The heat source is assumed to be acoustically compact, q(x, t) = q(t)δ(x− xq), and we

used a generalized amplitude-dependent heat release law reported in [8]:

q(t) = ρ̄K[n1uq(t− τq)− n0uq(t)] (2)

with K the heat power per unit mass flow. The coupling coefficients n0 and n1, and time delay τq are

functions of the dimensionless velocity fluctuation amplitude (A/ū).

Figure 1: (a) Sketch of φ propagating in a horizontal duct in the presence of steady mean flow ū.

(b) Sketch of G propagating in a horizontal duct with reversed steady mean flow ū.

Fig. 1(a) shows a schematic view of the acoustic propagation in the system. The length of the duct is

L, and an acoustically compact heat source is located at x = xq. The duct has arbitrary acoustic boundary

conditions at the inlet and outlet, represented by the reflection coefficients R0 and RL, respectively. An

initial perturbation is assigned to the system at the heat source position to observe the stability behavior.

Therefore, the initial conditions are given as:

φ(x, t = 0) = ϕ0δ(x− xq) and

(
∂

∂t
+ ū

∂

∂x

)
φ(x, t = 0) = ϕ′

0δ(x− xq) (3)

where ϕ0 and ϕ′
0 are constants. The condition for the material derivative of the velocity potential defines

the initial pressure field.
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3. The Green’s function approach

3.1 The integral governing equation

The Green’s function approach exploits Lagrange’s identity to develop an integral equation for φ.

First we define the inner product of two arbitrary functions w(ξ, τ) and v(ξ, τ),

〈w(ξ, τ), v(ξ, τ)〉 =
∫
ξ

∫
τ

w(ξ, τ)v(ξ, τ)dτdξ, (4)

where ξ and τ are "active" spatial and time variables, integrated over the respective domains of interest.

We introduce an arbitrary test function G and apply integration by parts to the inner product of G and

Eq. (1). This results in what is sometimes known as Lagrange’s identity:

〈Lφ,G〉 = 〈φ,L∗G〉+ boundary terms. (5)

L∗ above is the adjoint operator associated with L. G is the solution of

L∗G =
∂2G

∂τ 2
+ 2ū

∂2G

∂τ∂ξ
+ (ū2 − c2)

∂2G

∂ξ2
= δ(ξ − x)δ(τ − t), (6)

G is chosen to satisfy the same acoustic boundary conditions as φ at the ends of the duct

R0 =
a+
a−

=
A+

A−
, at ξ = 0; RL =

b−e−ik+L

b+e−ik−L
=

B−eik−L

B+eik+L
, at ξ = L. (7)

where A+, A−, B+, B− are the wave amplitudes of φ illustracted in Fig. 1(a); a+, a−, b+, b− are the wave

amplitudes of G. k+ = ω/(ū + c) and k− = ω/(ū − c) are the wave numbers. G is subject to terminal

conditions at the final time τ = T :

G(ξ, x,T , t) = 0,
∂G

∂τ
(ξ, x,T , t) + ū

∂G

∂ξ
(ξ, x,T , t) = 0. (8)

The test function G is called the adjoint Green’s function [9]. G can be interpreted as an impulse

response in the given geometry with the mean flow direction reversed, as sketched in Fig. 1(b). This

is what Howe called the "reverse flow theorem" [10]. It comes from the property sometimes called the

symmetry of Green’s function, i.e.

G(x, x∗, t, t∗) = g(x∗, x, t∗, t). (9)

The direct-source Green’s function [9], denoted as g, is obtained by applying the inner product and

Lagrange’s identity, 〈Lg,G〉 = 〈g,L∗G〉. Eq. 9 describes the relationship between the adjoint Green’s

function and the direct-source Green’s function. Its detailed proof can be found in [11, 12].

With Eqns. (5)-(8), the boundary terms related to the boundary conditions can be eliminated. Even-

tually, by definition of velocity potential, the velocity fluctuation at the compact source position xq is,

uq(t) =
∂φ

∂x

∣∣∣∣
x=xq

= −γ − 1

ρ̄

∫ t

τ=0

∂G(xq, x, τ, t)

∂x

∣∣∣∣
x=xq

q(τ)dτ+

− ϕ0
∂

∂x

[
∂G

∂τ
(xq, x, 0, t) + ū

∂G

∂ξ
(xq, x, 0, t)

] ∣∣∣∣
x=xq

+ ϕ′
0

∂G(xq, x, 0, t)

∂x

∣∣∣∣
x=xq

.

(10)
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As long as the solution of G is known, we can obtain the time history of uq. With the wave-form

assumption, we can calculate G analytically using a similar approach in [7]. The solution of the G is a

superposition of modes with modal amplitudes gn and modal frequencies ωn:

G(ξ, x, τ, t) = Re
∞∑
n=1

ĝn(ξ, x)e
iωn(τ−t), (11)

where Re denotes the real part and

ĝn(ξ, x) = − ψ(x, ωn)

c ωnF ′(ωn)

{
β(x, ωn)α(ξ, ωn) for ξ < x

α(x, ωn)β(ξ, ωn) for ξ > x
, (12)

with

ψ(x, ω) = ei(k++k−)x, (13a)

α(ξ, ω) = R0e
−ik−ξ + e−ik+ξ, (13b)

β(ξ, ω) = e−ik−ξ +RLe
i(k+−k−)Le−ik+ξ, (13c)

F (ω) = 1−R0RLe
i(k+−k−)L. (13d)

ωn, the natural frequency of the n-th mode, is the solution of the characteristic equation F (ω) = 0. F ′(ω)
in Eq. (12) represents the first-derivative of F (ω) with respect to ω.

3.2 Modal analysis

The Green’s function contains information on the eigenmodes of the system without the heat source.

The signal of velocity fluctuation uq is the sum of eigenmodes of the system with thermoacoustic feed-

back including the heat source. The integral equation (Eq. 10) relates the two parts together. The stability

of the system with the heat source can be obtained by modal analysis. The velocity fluctuations can be

expressed as a superposition of eigenmodes with complex frequencies Ωm and complex amplitudes um,

uq(t) =
∞∑

m=1

(
ume

−iΩmt + u∗
me

iΩ∗
mt
)
, (14)

where the superscript ∗ denotes the complex conjugate. By substituting Eqns. (2), (11), and (14), into

Eq. (10), and after some mathematical manipulations (details are ready to be submitted to a journal), we

obtain two equations for the two unknowns um and Ωm,

(
n0 − n1e

iΩmτq
) ∞∑

n=1

[
Gn

−i(Ωm − ωn)
+

G∗
n

−i(Ωm + ω∗
n)

]
=

2

(γ − 1)K
(15a)

∞∑
m=1

[
−um

(
n0 − n1e

iΩmτq
)

−i(Ωm − ωn)
+

−u∗
m

(
n0 − n1e

−iΩ∗
mτq

)
i(Ω∗

m + ωn)

]
=

iωnϕ0 − ϕ′
0

(γ − 1)K
+

ϕ0ūα
′

(γ − 1)Kα
, (15b)

and their complex conjugates, where Gn =
∂ĝn(xq, x, ωn)

∂x

∣∣∣∣
x=xq

and α′ =
∂α(x, ωn)

∂x

∣∣∣∣
x=xq

. The real part

of Ωm gives the angular frequency of the oscillation of velocity fluctuations. The imaginary part of Ωm

gives the growth rate of the velocity fluctuations in the presence of thermoacoustic feedback.
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4. Results and discussions

In this section, we show the stability behavior of the first acoustic eigenmode in a horizontal Rijke

tube. The length of the Rijke tube is L = 2 m. The mean temperature, T̄ = 304 K, is uniform along the

tube, and the corresponding speed of sound is c = 350 m s−1. The heater power is K = 3×105 W s kg−1.

The open ends employ the reflection coefficients R0 = −1 and RL = −1.

4.1 Validation

Validation against a wave-based network modelling approach is shown in Fig 2. We calculated the

Figure 2: Dependence of linear stability on the heat source position. A comparison of eigenvalues

computed with Green’s function approach (GF) and network modeling approach (NW). ū1 = 1 m s−1,

A/ū = 0, n0 = 0, n1 = 1. (a) τq = 0.001 s; (b) τq = 0.0085 s.

linear stability of a horizontal Rijke tube system at different heat source positions. The inlet mean flow

velocity is set to be ū1 = 1 m s−1. The temperature upstream of the heat source is T̄1 = 304 K, and the

temperature downstream of the heat source is T̄2 = 484 K, giving the respective speed of sound c1 = 350
m s−1 and c2 = 440 m s−1. The wave-based network modelling approach is adopted from [5] p.756-757,

example 4. The eigenvalues calculated with the Green’s function approach show good agreement with

the results of the network modelling approach.

Another validation is carried out by comparing the stability map of a zero-Mach number case with

the stability map created with Green’s function of [7], as shown in Fig. 3. Stability maps are created

based on modal analysis calculations to show the dependence of growth rate on
A

ū
and xq. It is observed

that under the zero-Mach condition, the two stability maps coincide. Thus, when setting the mean flow

to zero, our model coincides with the Green’s function model of the self-adjoint problem.

4.2 Dependence on heat source position

The stability of the system and hysteresis phenomena that occur when changing the heat source

location are discussed in this section. Figure 4(a) shows the stability map when Mach number Ma =
ū/c = 0.0004, i.e. the mean flow velocity is ū = 0.141 m s−1. It shows that when the heat source is

located on the upstream half of the duct, the system is linearly unstable. This is a well-known property of
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Figure 3: Stability maps of a uniform Rijke tube in the absence of mean flow, (a) computed with the

present G solution; (b) computed with G solution reported in [7].

Figure 4: Stability maps of a uniform Rijke tube, Ma = 0.0004.

a Rijke tube when the time lag is in the range of 0 < τq < T1/2 with T1 the first-mode oscillation period

of the acoustic wave [13]. In the present case, the time lag is slightly smaller than T1/2.

At the downstream half of the tube, we observe two hysteresis zones. An enlarged view is shown

in Figure 4(b). Starting from xq = 1 m and with a small initial condition assigned to the system, we

observe that as the heat source is moved downstream, the system behaves following the path marked by

the black dashed curve. The system stays linearly stable until it reaches xq = 1.25 m. Then, the system

is unstable and the amplitude of uq grows until it oscillates as a limit cycle. This is a subcritical Hopf

bifurcation and the region between xq = 1.00 ∼ 1.25 m is a hysteresis zone. The stability of the system

in the hysteresis zone depends on the initial excitation amplitude. Another subcritical bifurcation can be

observed if we follow a reverse path, i.e. moving the heat source upstream starting from the outlet. The

stability behavior of the system is marked by the red solid curve and a second hysteresis zone is found

in the range 1.75 m ≤ xq ≤ 2.00 m. Our prediction qualitatively agrees with the experiment results by

[14]. They have found subcritical Hopf bifurcations appearing when moving the heat source from the
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duct inlet to the outlet and during the reverse path, respectively. However, the width of the hysteresis

zone is not the same, and the fold point is not clear in our stability maps. The differences are due to

several possible reasons: The heat release model used here is a generalized model and does not describe

precisely the mesh electric heater used in the experiments. Furthermore, our stability map only follows

the first eigenmode of the system. Although low-frequency modes usually have a larger contribution to

acoustic energy, the measured oscillations observed in experiments are a sum of all eigenmodes.

Figure 5: Stability maps of a uniform Rijke tube when the mean flow velocity are (a) ū = 1 m s−1; (b)

ū = 20 m s−1; (c) ū = 36 m s−1.

4.3 Dependence on mean flow velocity

Figure 5 shows the stability maps of a uniform Rijke tube in the presence of different mean flow

velocities. Increasing the mean flow velocity reduces both linearly unstable regions in the duct’s upstream

and downstream half. In the unstable region, the growth rate is moderately reduced for larger ū. This

indicates that increasing the mean flow velocity has a stabilizing effect on the system. The first hysteresis

zone is pushed downstream and a larger initial excitation amplitude is required for the system to be

unstable. For the present problem, the unstable zone in the downstream half as well as the hysteresis

zones will disappear when the mean flow velocity is larger than ū = 36 m s−1. Experiments to study

the effect of mass flow rate on hysteresis behavior have also been conducted by [14]. It is reported

that for high mass flow rates in the investigated range (corresponding to Ma = 0.00036 ∼ 0.00067,

approximately), the hysteresis zone will be narrower but there exists a definite subcritical bifurcation.

According to our model’s prediction, the subcritical bifurcation exists until the Mach number reaches

about Ma = 0.1.

5. Conclusions

This work has described a Green’s-function-based framework to study the dynamics of self-excited

acoustic oscillations in a one-dimensional thermoacoustic system: a uniform Rijke tube in the presence

of a steady mean flow. Our model is able to predict the stability of the system and the nonlinear dynamics

of the oscillations, such as limit cycles and subcritical bifurcations. The model can capture the hysteretic

behavior observed in experiments when changing the heat source positions in the duct. The effect of

the mean flow velocity on the system stability is discussed. It is found that increasing the mean flow

can stabilize the system, narrow the unstable region in the stability map, and push the hysteresis zone

downstream. The hysteresis phenomena disappear when the Mach number reaches Ma = 0.1.
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