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ABSTRACT
Flame transfer functions (FTF) of laminar premixed flames are analytically investigated and
modelled. The study is based on the linearised G-equation, which is used to kinematically track
the flame front. In order to incorporate combustion properties, the laminar consumption speed is
considered to vary with the flame front stretch. Written in dimensionless form, the G-equation reveals
that the FTF depends on three dimensionless parameters: a Strouhal number (St*) that accounts for
the convective time of the flow perturbation along the flame-front, the flame aspect-ratio (Λ) and the
dimensionless Markstein length (Ma), adimensionalized by the injector radius. It is shown that the
latter term is responsible for an additional mechanism that acts as damper or amplifier of the flame
perturbation, respectively, for thermodiffusively stable or unstable flames. A LOM FTF is derived
both for Conical and V-flames which accounts for this effect and includes a different scaling term for
each configuration. The obtained FTFs are compared to previously proposed analytical models from
the literature, discussing the conditions where stretch effects are not negligible.

1. INTRODUCTION

One of the main challenges in the context of thermoacoustic instabilities is represented by the
predictions of unsteady heat released of flames [1]. Among the different methods to determine
FTFs, analytical approaches have the benefit of highlighting fundamental physics and capturing
the main parameters. Specifically, when these parameters are non-dimensional groups, universal
characteristics are identified and, if used as basis of low-order models (LOM), they permit to make
predictions when operating conditions change. Analytical analyses on flame dynamics are based on
the "level-set approach" (also called G-equation) [2], where the flame-front position is tracked via an
iso-surface. Previous works by Schuller et al. [3] and Preetham et al. [4] have identified two Strouhal
numbers as the main parameters describing the frequency response of laminar premixed flames.
They represent interplaying effects of interference between spatially uniform and non-uniform
disturbances.
The goal of the present study is to further enhance the modelling, in particular it is examined the
impact of not considering constant laminar consumption speed, but depending on the flame front
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stretch [5]. The investigation is not completely new: Wang et al. [6], Preetham et al. [7] have already
included stretch effects, but their analyses were limited to V-flames. The present work expands on
conical flame geometry and the simultaneous variation of all three depending parameters, leading to
a more complete description of regimes.

2. METHODOLOGY

The linearized G-equation is used to kinematically described the flame motion subjected to flow
perturbations [2]:

∂G
∂t

+ u · ∇G = s0
L(1 − Lκ)|∇G|, (1)

where for the 2D cases considered here, G(x, r, t) = x − F(r) − ε f (r, t) = 0 represents the level-set
tracking flame-front, as illustrated in Figure 1.

The velocity field is modelled as in Eq.(2), postulating a convective velocity perturbation. Radial
velocity perturbations will also be included ("incompressible-convective perturbation model") for the
conical flame as it is considered responsible for specific features of the frequency response, e.g. local
maxima in the gain of conical flames [8]:

ux = ū(1 + εu′x(x, t)); ur = −
1
2
εūr

∂u′x
∂x

, (2)

where u′x(x, t) = |u′|ei(kx−ωt) = |u′|ei( ωuc
x−ωt) = |u′|eiω(K x

uo
−ωt). Here the ratio between burner mean

velocity and convection speed K = uo/uc is introduced as perturbations do usually not convect with
the same speed as the mean flow [9, 10].

The consumption speed is assumed varying linearly with stretch, here considered only due to
curvature. The hydrodynamic strain component of stretch is instead neglected, as Preetham et al. [7]
showed its minor importance on the final FTFs. Both configurations of stabilised flames considered
(conical and V-flame) are axisymmetric surfaces. Hence their mean curvature, as the sum of curvature
terms along the axisymmetric and azimuthal direction, is:

κ(G) =

d2G
dr2(

1 +
(dG

dr

)2
)3/2 +

dG
dr

1

r
√

1 +
(dG

dr

)2
, (3)

After substituting Eq.(3), Eq.(2) in Eq.(1), one obtains the zero-order equation F(r), i.e. mean flame
position and the first-order approximation f (r, t), which describes the front displacement.
To simplify the number of depending parameters, the zero-order equation is considered with constant
flame angle (dF/dr = 1/ tan(α)), this implies that for conical flames, tip curvature is neglected. This
is considered a reasonable approximation because the flame length error introduced is negligible and
also because the flame tip should be described differently as its displacement speed can be much
higher than those on the flame sides [11].
Variables are then non-dimensionalised: f ∗(r, t) = f (r, t)/L f , r∗ = r/R, t∗ = uot/L f and the equations
for the front displacement for each configuration written in dimensionless form in Eq.(4a) for V-flame
and Eq.(4b) for conical:

∂ f ∗

∂t∗
−Ma cos(α) sin2(α)

∂2 f ∗

∂r∗2
+

(
cos2(α) −Ma cos(α)

1
r∗

)
∂ f ∗

∂r∗
= −eiStKr∗ (4a)
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iKSt
2
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)

eiStK(1−r∗) (4b)



where St = ωL f /uo and Ma = L/R
Afterwards (4a), (4b) are divided by cos2(α), obtaining three non-dimensional numbers: Λ =

cos2(α), St∗ = St/Λ(related to the amount of time taken for a flame-front disturbance to propagate the
flame length, Preetham et al. [4]) and Ma∗ = Ma/ cos(α).
The Π-criterion is also fulfilled: the flame dynamics originally depending upon five (ω,R, s0

L, uo,L)
parameters is reduced to three (St∗,Λ,Ma∗), as there are two fundamental units [L] and [T] used for
the kinematic description.
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Figure 1: Sketch of the flames in the axisymmetric ref.system, (left) V-flame, (right) conical flame

3. RESULTS AND DISCUSSION

In the present work the effect of varying consumption speed on the flame dynamics is under
investigation. Thus Eqs.(4a),(4b) are written in the most complete form including curvature due to
two contributions. In this section solutions of Eqs.(4a),(4b) are computed as well as solutions by
considering one stretch term of Eq.(3) at the time. Thus, the relative contribution of each stretch term
for each flame geometry is highlighted and dominant terms identified. This will allow simplifications
and ultimately more compact scaling terms. Additionally, noticing that each stretch term is multiplied
by functions of the flame angle, it is also worthwhile to find solutions for different flame angles.

Moreover, as flame geometry determines how flame front displacements translate to global heat
release rate fluctuations [12], no prior simplifications can be made on Eqs.(4a), (4b). The calculation
of the FTF based on area fluctuation will be:

FT F =
Q′(t)/Q
u′(t)/uo

=
A′(t)

A
=
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r(s) ds′
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r
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0
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√
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(5)

which written in dimensionless form for V-flame (subscript w) and conical (subscript c), is:

FT FW = 2Λ

[
f ∗(1) −

∫ 1

0
f ∗ dr∗

]
, FT FC = 2Λ

∫ 1

0
f ∗ dr∗



3.1. FTFw(St∗,Λ,Ma∗) for V-flame
Performing a Laplace transform, PDE Eq.(4a) is transformed to the following second-order ODE:

Ma∗(1 − Λ)
∂2 f ∗

∂r∗2
+

(
Ma∗

1
r
− 1

)
∂ f ∗

∂r∗
+ iSt∗ f ∗ = −

1
Λ

eiStKr∗ (6)

with boundary conditions: f ∗(0) = 0; ∂
2 f ∗

∂r∗2

∣∣∣∣∣
r∗=1

= 0, expressing anchoring at the base and tip free to

move. The assumption of a stiffly anchored base allows to neglect flame base motion effects [13], as
well as to obtain a simplified solution of Eq.(6) [14].
Numerical integration is required for the solution due to the non-constant coefficients. The problem
is solved as fifth-order method boundary-value problem (bvp), using tolerances of 10e-5 for grid
resolution. The FTF is then calculated as in Eq.(5).

Results for different flame angles are plotted in Figure 2. K=0.9 has been set as plausible value
from the literature [15], related to the convection speed adjacent to the bluff body. Ma=0.010
corresponding to lean CH4/Air flame. Solutions considering only axial and azimuthal stretch term,
respectively, are also plotted.

 Figure 2: Gain (left) and Phases (right) considering no stretch (FCW [3]), total stretch (FMa) Eq.(3),
axial only (FMa,axial), azimuthal only (FMa,azim). From top to bottom, angles are 20◦ and 70◦

Results of Figure 2 show that for short flames (α = 70◦), stretch is unimportant. Indeed, as
pointed out from [3], for such short flames convective effects are suppressed and therefore the flame
is weakly wrinkled. FTFs feature same characteristics as considering a spatial uniform perturbation



velocity [16]. For long flames (α = 20◦), on the opposite, convective disturbances are non-negligible
and stretch terms act to smooth out the large secondary humps of the gain. This phenomenon occurs
when St∗ > 2π, namely when the flame is not compact w.r.t. perturbation wavelength.
Moreover, it is also demonstrated that the axial stretch term is dominant and suffices to reproduce
the FMa, as suspected in the conclusions by Wang et al. [6] and Preetham et al. [7]. We could now
neglect the azimuthal term, to simplify Eq.(6) and retrieve an analytical solution which will present
the scaling term due to dependency of consumption speed upon axial stretch. The final expression is
similar to Eq.(27) in Preetham et al. [7]:

f ∗(r∗) =

(
i

(KΛ − 1)ΛSt∗
−

Ma∗(1 − Λ)K2Λ

(KΛ − 1)2

) (
eiSt∗−Ma∗St∗2r∗ − eiKΛSt∗r∗

)
+ O(Ma∗2) (7)

Third term in Eq.(7) shows that the perturbation propagating along the flame front is dampened or
amplified for respectively thermodiffusively stable or unstable flames. The decay or growth rate
depends on the scaling term Ma∗(1 − Λ)St∗2. After integration as in Eq.(5), the analytical expression
of the FTF is:
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(
i
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3.2. FTFc(St∗,Λ,Ma∗) for Conical flame
Similar procedure from previous section is made for the conical flame geometry. Performing a
Laplace transform PDE Eq.(4b) is transformed in the following second-order ODE:

Ma∗(1 − Λ)
∂2 f ∗

∂r∗2
−

(
Ma∗

1
r
− 1

)
∂ f ∗

∂r∗
+ iSt∗ f ∗ = −

(
1
Λ
−

iKSt∗

2
r∗

)
eiStK(1−r∗) (9)

with boundary conditions: f ∗(1) = 0; ∂ f ∗

∂r∗

∣∣∣∣∣
r∗=0

= 0, expressing anchoring at the base and symmetry

at tip. FTF is then evaluated as in Eq.(6). The motivations to assume stiffly anchored flame are the
same of those of V-flame case.
Results from different flame angles are plotted in Figure 3. K=0.9 has been set as plausible value
from the literature [17] and Ma=0.010 corresponding to lean CH4/Air flame. Solutions considering
only axial and azimuthal stretch term are also plotted.

Similarly to the V-flame case, for large angle the convective effects are negligible. Again the
condition of elongated flame is of our interest because of the high flame front wrinkling. Figure 3
shows that for conical geometry, the dominant term is the azimuthal one. This is explained by the fact
that axial stretch term scales as Ma∗(1 − cos2(α))St∗2 so, although its high frequency dependence, for
small angles the term tends to vanish. On the other hand the azimuthal term, depending on 1/r∗, is
significant as the disturbance approaches the flame tip, meaning most of the flame front for elongated
flames. The result agrees with studies on flame-front cellular instability [18] which have shown that
wrinkles tend to be aggravated by negative stretch, which are manifested by conical geometries.

As for the V-flame an analytical FTF is here derived. This time the neglected term is the axial one.



 

Figure 3: Gain (left) and phases (right) considering no stretch (FICC [8]), total stretch (FMa) Eq.(3),
axial only (FMa,axial), azimuthal only (FMa,azim). From top to bottom, angles are 15◦ and 70◦

The solution of the first-order ODE obtained from Eq.(9) reads:

f ∗(r∗) =
1

ΛSt∗(ΛK − 1)

[
i
(
1 −

iKΛSt∗

2
−

KΛ

2(kΛ − 1)

) (
(1 − iMa∗St∗ ln r∗) eiS t∗(1−r∗) − eiKΛSt∗(1−r∗)

)
+

KΛ

2
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(
1
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)
Ma∗St∗ (Ei(−iSt∗(kΛ − 1)) − Ei(−iSt∗(KΛ − 1)r∗)) eiSt∗(KΛ−r∗)

+
(KΛ)2

2(KΛ − 1)
Ma∗St∗

(
eiSt∗(1−r∗) − eiSt∗KΛ(1−r∗)

) ]
+ O(Ma∗2) (10)

where Ei refers to the exponential integral function. It can be noticed that this time the scaling reads
Ma∗St∗. After integration as in Eq.(5), one can obtain the analytical expression of the FTF (not shown
here due to the lenghty expression involving additional non-elementary functions).

3.3. Application of FT FC(St∗,Λ,Ma∗) to Conical TD stable flame
In this final section we compare the proposed LOM of Section 3.2. with experimental data [8](Fig.
6.12, α ' 21◦) and FTFs from the literature. The goal is to highlight the features captured with the
proposed enhancing modelling approach.
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Figure 4: Gain (left) and Phases (right) considering FTFs with different velocity perturbation models:
FUC (uniform) Ducruix et al. [16], FCC (convective) Schuller et al. [3], FICC (incompressible-
convective) Cuquel et al. [8] with K = 0.8, FC,Ma (incompressible-convective) & azimuthal stretch
from the present work.

Figure 4 shows that for St∗ < 2π, i.e. flame compact to velocity wavelenght, any model suffices to
reproduce the experimental data. Specifically, even the FUC is adequate as in this regime the flame is
uniformly displaced. For St∗ > 2π, i.e. non compact flame, the FICC is employed to reproduce local
maxima in the gain. The drawback of this model is an over-prediction in the gain, even when used a
general phase velocity K < 1 [19]. The proposed FT FC causes these overshoot to be lowered, as well
as it seems predicting rightly the saturation on the phase. To solve overpredictions, Cuquel introduced
a spatial decay of the convective velocity by introducing a complex component in the form of (a + ib).
Bourehla and Baillot [20] refer to this phenomenon as "filtering" and some authors [6, 7] address the
role to the flame’s stretch sensitivity rather hydrodynamic effect. Our results also seems accounting
the "filtering" phenomenon as a flame feature. As proof of this, the introduced imaginary decay of
Cuquel can be linked to the decay of flame displacement from Eq.(10).

4. CONCLUSIONS

Based on previous works to highlight the unsteady stretch effects on the flame response of laminar
flames, further investigations have been made here to: i. explore regimes under which stretch effects
have to necessarily be considered and ii. extension to various flame geometries. For the first point, the
condition under which stretch plays an important role is identified for elongated flames (α → 0) and
frequencies corresponding to St∗ = ωL f /uo cos2(α) > 2π. Under these conditions spatially uniform
and non-uniform disturbances interfere, generating pronounced wrinkles at the flame front. For the
second point, the relative importance of stretch terms has been scrutinised and further simplified for
conical and V-flame. As the azimuthal curvature is found to dominate for conical flame and the
axial for the V-flame, two different scaling factors are found. They read Ma∗St∗ for conical and
Ma∗(1 − cos2 α)St∗2 for V-flame. Ultimately a LOM FTF is proposed based on these scaling terms.
To conclude, we also mention that the present work has been motivated to enrich the description of
flame dynamics via dimensionless parameters accounting for combustion properties. This may be
useful to predict flame dynamics for different fuel mixtures, for instance CH4/H2 blends which are
less thermodiffusively stable or even unstable.



ACKNOWLEDGEMENTS

This work is part of the Marie Skłodowska-Curie Innovative Training Network Pollution
Know-How and Abatement (POLKA). We gratefully acknowledge the financial support
from the European Union’s Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement No. 813367.

REFERENCES

[1] Tim C. Lieuwen. Unsteady Combustor Physics. Cambridge University Press, New York, N.Y.,
USA, second edition, 2021.

[2] M Matalon and B J Matkowsky. Flames as Gas Dynamic Discontinuities. Journal of Fluid
Mechanics, 124:239–259, 1982.

[3] T. Schuller, D. Durox, and S. Candel. A Unified Model for the Prediction of Laminar Flame
Transfer Functions: Comparisons Between Conical and V-Flame Dynamics. Combustion and
Flame, 134(1,2):21–34, July 2003.

[4] Preetham, Santosh Hemchandra, and Tim Lieuwen. Dynamics of Laminar Premixed Flames
Forced by Harmonic Velocity Disturbances. Journal of Propulsion Power, 24(6):1390–1402,
2008.

[5] G.H. Markstein. Nonsteady Flame Propagation. Pergamon Press, New York, first edition, 1964.
[6] H. Y. Wang, C. K. Law, and T. Lieuwen. Linear Response of Stretch-Affected Premixed Flames

to Flow Oscillations. Combustion and Flame, 156(4):889–895, April 2009.
[7] Preetham, Sai K. Thumuluru, Tim Lieuwen, and H. Santosh. Linear Response of Laminar

Premixed Flames to Flow Oscillations: Unsteady Stretch Effects. Journal of Propulsion and
Power, 26(3):524–532, 2010.

[8] Alexis Cuquel. Dynamics and Nonlinear Thermo-Acoustic Stability Analysis of Premixed
Conical Flames. PhD thesis, Ecole Centrale Paris, Paris, France, 2013.

[9] A.L. Birbaud, D. Durox, and S. Candel. Upstream Flow Dynamics of a Laminar Premixed
Conical Flame Submitted to Acoustic Modulations. Combustion and Flame, 146(3):541–552,
August 2006.

[10] Karthik Kashinath, Santosh Hemchandra, and Matthew P Juniper. Nonlinear Thermoacoustics
of Ducted Premixed Flames: The Influence of Perturbation Convection Speed. Combust. Flame,
160(12):2856–2865, 2013.

[11] T Poinsot, T Echekki, and MG Mungal. A Study of the Laminar Flame Tip and Implications for
Premixed Turbulent Combustion. Combustion Science and Technology, 81(1-3):45–73, 1992.

[12] Thomas Steinbacher, Alp Albayrak, Abdulla Ghani, and Wolfgang Polifke. Consequences of
Flame Geometry for the Acoustic Response of Premixed Flames. Combustion and Flame,
199:411–428, January 2019.

[13] Alexis Cuquel, Daniel Durox, and Thierry Schuller. Impact of Flame Base Dynamics
on the Non-Linear Frequency Response of Conical Flames. Comptes Rendus Mécanique,
341(1–2):171–180, 2013.

[14] A. Fleifil, A. M. Annaswamy, Z. A. Ghoneim, and Ahmed F. Ghoniem. Response of a Laminar
Premixed Flame to Flow Oscillations: A Kinematic Model and Thermoacoustic Instability
Results. Combust. and Flame, 106:487–510, 1996.

[15] D. Durox, T. Schuller, and S. Candel. Combustion Dynamics of Inverted Conical Flames. Proc.
Combust. Inst., 30(2):1717–1724, January 2005.



[16] Sébastien Ducruix, Daniel Durox, and Sébastien Candel. Theoretical and experimental
determinations of the transfer function of a laminar premixed flame. Proceedings of the
Combustion Institute, 28(1):765–773, January 2000.

[17] F. Baillot, D. Durox, and R. Prud’homme. Experimental and Theoretical Study of a Premixed
Vibrating Flame. Combustion and Flame, 88(2):149–168, 1992.

[18] Chung K Law. Combustion Physics. Cambridge University Press, 2007.
[19] Stephan Schlimpert, Santosh Hemchandra, Matthias Meinke, and Wolfgang Schröder.

Hydrodynamic Instability and Shear Layer Effect on the Response of an Acoustically Excited
Laminar Premixed Flame. Combustion and Flame, 162:1–23, 2015.

[20] F. Baillot, A. Bourehla, and D Durox. The Characteristics Method and Cusped Flame Fronts.
Combustion Science and Technology, 112(1):327–350, January 1996.


	INTRODUCTION
	Methodology
	Results and discussion
	FTFw(St*,, Ma*) for V-flame
	FTFc(St*,, Ma*) for Conical flame
	Application of FTFC(St*,,Ma*) to Conical TD stable flame

	CONCLUSIONS

