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ABSTRACT
A numerical approach based on high-order stabilized finite elements is proposed to solve thermo-
acoustic and visco-acoustic problems accounting for mean flow effects. The approach is based
on the linearized Navier-Stokes equations written in conservative form in the frequency domain.
A high-order finite-element method using hierarchic shape functions is applied for enhanced
accuracy. A novel enrichment strategy, inspired by the extended Finite Element Method (X-FEM),
is developed to model the finer scales near the walls at a reasonable computational cost. It relies
on a re-orthogonalization procedure proposed to preserve both the continuity of the solution and
the conditioning properties of the discrete model. The performance of the method is evaluated by
performing two-dimensional simulations of acoustic waves affected by visco-thermal wall losses
and mean flow effects while propagating in a duct. Numerical results are in good agreement with
analytical models from the literature.

1. INTRODUCTION

Acoustic dissipation due to visco-thermal losses are important in many applications like musical
wind instruments or turbofan liners. The sound propagation in the presence of acoustic viscous and
thermal boundary layers can be modelled by the linearized Navier-Stokes equations (LNSE). They
also provide a description of the convection and refraction effects of acoustic waves propagating
through sheared mean flows. The LNSE have been widely solved using frequency-domain finite-
element methods (FEM) [1, 2]. However, they often require very fine meshes to resolve the
acoustic viscous and thermal boundary layers. These constraints on the mesh resolution can lead to
computational costs that can be prohibitive for industrial applications.

In this work, a numerical approach based on high-order stabilized finite elements is proposed to
solve the LNSE. The equations are written in conservative form in the frequency domain. This high-
order finite-element method, named p-FEM, is based on the use of hierarchic shape functions and
leads to enhanced accuracy as well as reduced memory and CPU-time compared to conventional
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low-order FEM. It has been already successfully applied to solve problems using various linearized
acoustic operators such as the Helmholtz equation [3], the linearized potential equation [4] or the
linearized Euler equations [5].

In order to overcome the limitation due to the mesh resolution, an enrichment strategy is proposed
in this study. It consists in adding to the finite-element polynomial basis analytical functions
which reproduce the visco-thermal and mean flow effects close to the walls. In that way, LNSE
simulations can be performed on coarser meshes that do not resolve the acoustic boundary layers,
leading to a reduced computational cost. Similar enrichment techniques have been successfully
applied in other fields in the literature. As an example, the extended finite element method (X-FEM)
considers discontinuous basis functions to better approximate cracks in structural components [6].
An enrichment strategy has also been proposed by Krank et al. as a wall-modelling approach for
Reynolds-averaged Navier-Stokes simulations [7] and detached eddy simulations [8]. To the authors’
knowledge, it is the first time an enrichment strategy is developed to model visco-thermal effects on
sound propagation.

The performance of the enriched high-order FEM approach is evaluated by performing two-
dimensional simulations of a closed-end waveguide containing a quiescent medium and of the sound
attenuation in duct with uniform mean flow. Enriched LNSE solutions are compared to resolved
LNSE solutions and analytical results. The paper is structured as follows. Section 2 describes the
LNSE formulation together with the high-order FEM and the enrichment strategy. The closed-end
waveguide problem is presented in Section 3.1 and the sound attenuation in a duct in Section 3.2.
Conclusions are given in Section 4.

2. FINITE ELEMENT MODEL

2.1. Governing equations
We consider a perfect gas and small perturbations represented by the density ρ′, the velocity

vector u′ = (u′, v′), the pressure p′ and the temperature T ′ around a steady mean flow of density ρ0,
velocity u0 = (u0, v0), pressure p0 and temperature T0. The behaviour of these perturbations is
governed by the linearized Navier-Stokes equations (LNSE). These equations can be written in two-
dimensional Cartesian coordinates as:
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where q = [ρ′, (ρu)′, (ρv)′, (ρE)′]T is the vector of the unknown variables. The energy perturbation
writes as:
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where cv is the specific heat at constant volume and energy E0 = cVT0 + ||u0||
2
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µ
i , Ei, j and M−1 are defined from the mean flow properties in Appendix. These equations

are solved in the frequency domain considering an implicit time dependence for the solution vector
q(x, t) = q(x, ω)e+iωt where ω is the angular frequency.

The LNSE are formulated using a Galerkin finite-element approach. For a computational domain
Ω with a boundary Γ, the variational formulation writes as:∫
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where ψ is the test function vector, † is the Hermitian operator, F = Axnx +Ayny is the normal flux,
n = [nx, ny]T is the unit normal vector on Γ pointing out of domain Ω and FLNSE is a flux term defined
as:
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The conventional Galerkin finite-element formulation is known to suffer from stability issues for
convection-dominated problems [9]. The LNSE formulation is thus stabilized using a streamlined
upwind Petrov Galerkin stabilization technique [10].

2.2. High-order finite element method
The weak form Equation 3 is solved using a high-order finite element method, named p-FEM.

The p-FEM approach is less sensitive to dispersion errors and has shown to provide substantial
reductions in memory and CPU time when compared to conventional low-order FEM on a variety of
time-harmonic problems including Helmholtz [3], linearized potential theory [4] and linearized Euler
equations [5]. The domain Ω is partitioned into a set of non-overlapping quadrangular elements. The
grid is generated using the open source mesh generator Gmsh [11]. In each element, the numerical
solution is made up of high-order H1-conforming hierarchical polynomial shape functions [12]. In
two dimensions, these functions can be classified into three categories, namely, nodal, edge, and
bubble functions. In the simple situation where the grid is aligned with the Cartesian coordinates, the
number of degrees of freedom contributing to the solution on any element is given by

Ndof = 4 +
[
2(px − 1) + 2(py − 1)

]
+ (px − 1)(py − 1) (5)

where px and py correspond to the order enforced in the x and y directions respectively. Defining
direction-dependent polynomial approximations allows to better control the accuracy on distorted
elements, and/or when the physics is anisotropic [13]. The three terms in Equation 5 correspond to
the numbers of nodal, edge, and bubble functions, respectively. The latter are internal to the element
and may thus be condensed out at assembly level to further improve the computational efficiency.

2.3. Enrichment strategy
Solutions of the linearized Navier-Stokes equations are challenging, with the presence of very

short length scales in the thermo-viscous boundary layers. While refining the mesh is always an
option, it comes at a very high computational cost. Instead, one may leverage the a priori knowledge
of the solution and resort to an enrichment strategy. In this paper an innovative enrichment strategy
is proposed to enrich a high-order hierarchical polynomial basis for H1-conforming elements with
one or more continuous enrichment functions. The enrichment procedure is based on the H1-
orthogonalization of the enrichment functions over the polynomial basis. This procedure ensures the
continuity of the approximation basis over the computational domain and improves the conditioning
of the resulting system matrices [14].

In a one-dimensional domain, the enrichment function f can be seen as a summation of its
projection over the polynomial space and an enriched basis function
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where ψvi are the linear nodal basis functions and ψe
ki

are the high-order edge basis functions of order
ki = 2 : p where p is the edge order. ψe is the edge enriched basis which is defined as the component of
the enrichment function that cannot be represented by the polynomial basis. avi and aki

e are coefficients
obtained by a projection-based interpolation approach [12]. avi are equal to f (vi), while aki

e verify the
following minimisation problem:
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This minimisation problem is local, computed edge by edge. It also ensures the global continuity of
the approximation. Starting from the minimisation problem, the following weak formulation can be
derived to compute aki

e : ∫
e

∂

∂te

 f −
∑

vi

f (vi)ψvi −
∑

ki

aki
e ψ

e
ki

 ∂ψei
ki

∂te
de = 0 (8)

where te is the edge tangent. It can be noted that only integrals over the edge e are present. Using
Equation 8 the coefficients aki

e are computed and from Equation 6 the edge enriched basis is evaluated.
When more than one enrichment function is needed, the process restarts from Equation 7: the new
enriched function is projected onto the polynomial basis and the already computed enriched edge
basis functions. After computing the enriched edge functions for each edge, the approach can be
extended to bubble shape functions applying a similar strategy.

In the current paper the enrichment strategy is used to represent the viscous and thermal acoustic
boundary layer profiles which originate along no-slip and isothermal walls, respectively. While the
exact solution of the LNSE problem cannot be inferred a priori in wall regions on a complex use case,
analytical models may be leveraged to approximate their behaviour. In this work, three enrichment
functions are introduced. Analytical viscous and thermal boundary layer profiles fv and ft in quiescent
mediums [15] are used to account for wall losses. In addition, in order to account for steep gradients in
the vicinity of the walls, an hyperbolic tangent profile fhyp is also considered. For a two-dimensional
duct of height H, these functions are defined as a function of the wall-normal distance y as:
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where δv =
√

2µ0/(ρ0ω) and δt =
√

2λt/(ρ0ωcp) are the viscous and thermal boundary layer
thicknesses, respectively. µ0 is the dynamic viscosity, λt is the thermal conductivity, cp is the specific
heat at constant pressure, ρ0 the density and ω the angular frequency.

After projection and re-orthogonalization, these functions are simply appended to the original
high-order polynomial approximation basis. Figure 1 shows a quadrilateral element with quadratic
approximation basis px = py = 2 and the re-orthogonalization of the hyperbolic tangent enrichment
function.

The enriched finite element strategy should allow to more efficiently address the multiple length
scales present in the solution, while not having to drastically refine the mesh in the wall regions.
It is worth to point out that the enrichment procedure proposed here is completely general, as it is
independent from the operator and the enrichment functions at hand.

3. APPLICATIONS

The performance of the newly developed high-order finite element formulation for the linearized
Navier-Stokes equations together with the enrichment strategy is evaluated by simulating two two-
dimensional test cases, namely a closed-end waveguide containing a quiescent medium and a duct in
the presence of a uniform mean flow (see Figure 2).

3.1. Closed-end waveguide
A two-dimensional closed-end waveguide in a quiescent medium is first considered. The

waveguide is presented in Figure 2a. Its length and height are equal to L = 170 mm and
H = 2.5 mm, respectively. The waveguide open-end boundary is represented by a plane piston



Polynomial basis Enriched basis

Figure 1: Second order hierarchic polynomial basis functions (px = py = 2), together with the re-
orthogonalization of an hyperbolic tangent enrichment function.

(a) (b)

Figure 2: Representation of (a) the closed-end waveguide geometry and (b) the duct geometry.

source, corresponding to an imposed inlet velocity of Vin = 1 m/s. At the closed-end, a rigid adiabatic
slip wall is considered. At the top and bottom walls of the waveguide, three loss configurations are
successively studied: thermal losses only, viscous losses only and visco-thermal losses. They are
associated to isothermal slip walls, adiabatic no-slip walls and isothermal no-slip walls, respectively.
The frequency range of interest extends from 2900 Hz to 3150 Hz. It is selected around the resonance
frequency of the third axial mode of the waveguide. The ambient medium is characterized by a
speed of sound c0 = 347 m/s, a temperature T0 = 300 K, a density ρ0 = 1.2 kg.m−3, a specific
heat ratio γ = 1.4, a dynamic viscosity µ0 = 1.829 · 10−5 kg.m−1s−1 and a thermal conductivity
λt = 0.026 W.m−1K−1.

Six different cases are considered for the FEM simulations. They are defined by the LNSE strategy,
the resolution of the mesh and the polynomial orders px and py of the solution. The parameters of the
simulations are given in Table 1. Simulations are performed with and without the enrichment strategy
(referred to as eLNS) on three Cartesian meshes with a fine, medium and coarse spatial discretization.
The fine mesh is made of Nx = 85 and Ny = 120 points in directions x and y. The grid spacing is
uniform in direction x while a geometric progression of ratio 0.9 from the duct centerline to the duct
walls is applied in direction y, leading to an acoustic viscous boundary layer thickness δv discretized
by at least 25 elements. The medium grid has the same resolution as the fine grid in direction y
whereas Nx = 20 in direction x. For the coarse grid, Nx = 20 and Ny = 2 are used. Simulations
using the enrichment strategy are carried out using the enrichment functions fhyp, fv and/or ft. They
are all performed using the coarse mesh. The FEM polynomial orders px and py are selected based



on the resolution of the FEM mesh. Using the fine mesh, px and py are equal to 2 as typically found
in conventional low-order FEM simulations. For the Medium mesh, py = 2 and px = 10 as the grid
spacing is large in direction x. Finally, for the coarse mesh, the simulations are performed using
px = 10 and py = 2 and 8.

Table 1: Parameters of the simulations for the closed-end waveguide.

Case LNSE
strategy

Mesh Nx Ny px py Enrichment function(s)

LNS-Fine LNS Fine 85 120 2 2 -

LNS-Medium LNS Medium 20 120 10 2 -

LNS-Coarse LNS Coarse 20 2 10 2, 8 -

eLNS-hyp eLNS Coarse 20 2 10 2, 8 fhyp

eLNS-v eLNS Coarse 20 2 10 2, 8 fv

eLNS-vt eLNS Coarse 20 2 10 2, 8 fv and ft

The fluctuating pressure p′wall computed numerically at the center of the duct closed-end (see
Figure 2a) is compared to the analytical solution p′ref given by Bossart [16]:
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where l′v = µ0/(c0ρ0) and l′h = λt/(c0ρ0cp) are the characteristic length for the viscous and thermal
dissipation and k0 = ω/c0. A relative error ϵ with respect to the analytical solution is computed as:

ϵ =
|p′wall − p′ref |

|p′ref |
(11)

Figure 3 shows the pressure p′wall and the relative error ϵ for vertical polynomial order py = 2. For
the three loss configurations, the LNS-Fine solution is close to the reference solution with ϵ < 4%,
indicating the validity of the LNSE implementation. Without enrichment and using a fine mesh,
as expected, visco-thermal losses are well predicted. The LNS-medium results do not significantly
deviate from LNS-Fine, which demonstrates that the accuracy of LNS without enrichment is driven
by the mesh resolution in the wall-normal direction. This is indeed confirmed by the high error levels
obtained for LNS-Coarse, especially when viscous losses are considered. Using LNS enrichment,
improved FEM results are obtained compared to the LNS-Coarse solution. For the three loss
configurations, accurate results are obtained when the enrichment functions include the analytical
boundary profiles fv and ft for viscous and thermal losses. For eLNS-hyp, higher error levels are
obtained compared to eLNS-vt. This is attributed to the enrichment function fhyp which is not an
analytical boundary layer solution of the problem.

Figure 4 shows the pressure p′wall and the relative error ϵ for vertical polynomial order py = 8. For
LNS-Coarse performed without enrichment, increasing the polynomial order py from 2 to 8 leads to
lower error levels. However, these levels remain overall higher than those of the eLNS simulations
using the viscous and thermal boundary layer enrichment functions. This demonstrates that for a
coarse mesh, increasing the order of the solution without using enrichment is not sufficient to obtain
accurate results. When enrichment is used, increasing the polynomial order py from 2 to 8 has no
effect on the eLNS-vt solution. It leads to improved accuracy only when the enrichment function is
not an analytical boundary layer profile for the type of losses accounted in the problem.



The profiles of the normalized velocity |u′| obtained at f = 3050 Hz and x = 4L/5 for the
waveguide configuration including viscous losses are represented in Figure 5 as a function of the
waveguide half-height, with the wall located at y = 0. The profile obtained from LNS-Fine is used
as reference here. The LNS-Coarse solution shows large discrepancies with the reference solution.
This is especially true for py = 2 where the velocity gradient near the wall is not captured. Using
enrichment, the solutions eLNS-v and eLNS-vt computed using the function fv are in very good
agreement with the LNS-Fine solution for both py = 8 and py = 2. In eLNS-hyp, a poor agreement
with LNS-Fine is reported for py = 2. Using py = 8, the discrepancy with LNS-Fine is reduced but
remains higher than in eLNS-v and eLNS-vt.
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Figure 3: (a) Pressure p′wall at the closed-end of the waveguide and (b) relative error ϵ, for vertical
polynomial order py = 2.
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Figure 4: (a) Pressure p′wall at the closed end of the waveguide and (b) relative error ϵ, for vertical
polynomial order py = 8.

The normalized velocity profile obtained in eLNS-v in Figure 5 is decomposed into its polynomial
and enriched components. Results are presented for py = 2 and 8 in Figure 6, together with the
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Figure 5: Normalized velocity |u′| in closed-end waveguide for viscous loss configuration at x = 4L/5
at f = 3050 Hz for polynomial order (a) py = 2 and (b) py = 8.
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Figure 6: Decomposition of the normalized velocity |u′| into its polynomial and enrichment
components for the FEM simulation eLNS-v using enrichment function fv and polynomial orders
(a) py = 2 and (b) py = 8. Results for viscous loss configuration at x = 4L/5 and f = 3050 Hz.

analytical enrichment function fv. At py = 2, the enriched component of the solution plays a
fundamental role in the representation of the high gradient at the wall responsible for the viscous
losses. This also explains the differences between the LNS-Coarse and eLNS-v solutions both
computed using the Coarse mesh. At py = 8, the enriched component also contributes to the accuracy
of the solution, but to a lesser extent as the higher polynomial basis better captures the small length
scales near the wall compared to the simulation at py = 2.

Thanks to enrichment, LNS simulations can be performed using coarser meshes leading to a
reduction of the size of the FEM problem. As an illustration, Table 2 shows the number of degrees
of freedom (DoFs), which determines the size of the global system, for the six LNSE cases and for
various polynomial orders py. Using enrichment, the largest number of Dofs is obtained for eLNS-vt
as two enrichment functions are considered. However, the number of Dofs in eLNS-vt is 31 times
smaller than LNS-Fine for py = 2. The number of Dofs being related to the memory requirements,
the enrichment strategy allows to reduce drastically the memory needed to solve the LNSE.

3.2. Sound attenuation in a duct with uniform mean flow
The enrichment strategy for LNSE is now applied to predict the viscous losses in a straight duct

in the presence of a uniform mean flow. The duct height and length are Hd = 2.5 mm and Ld = 1 m,
respectively (see Figure 2b). The uniform mean flow is characterized by a Mach number M0 =



Table 2: Number of degrees of freedom for the numerical simulations of the closed-end waveguide.

Case
polynomial order in the y direction

py = 2 py = 8

LNS-Fine 164 800 -

LNS-Medium 193 800 -

LNS-Coarse 4 000 13 700

eLNS-hyp & eLNS-v 4 600 14 200

eLNS-vt 5 200 14 800

u0/c0 = 0.05, a speed of sound c0 = 347 m/s, a temperature T0 = 300 K, a density ρ0 = 1.2 kg/m3,
a specific heat ratio γ = 1.4 and a dynamic viscosity µ0 = 1.829 · 10−5 kg.m−1s−1. Under these
conditions, the flow is considered as laminar (with Reynolds number Re = ρ0u0Hd/µ0 < 2900) and the
acoustic dissipation associated to the flow turbulence is assumed to be negligible. The horizontal duct
walls are modelled by an adiabatic no-slip boundary condition, to account for viscous losses. Thermal
losses are not considered here. At the duct ends, Perfectly Matched Layers (PML) [3] are used to
absorb outgoing waves. Only downstream propagating waves are considered in this study. A plane
wave is therefore injected at the duct inlet located at the left-hand side of the domain. The frequency
of interest ranges from 2 kHz to 5 kHz, corresponding to shear numbers S h = Hd/δ varying from 70
to 120, with δ =

√
µ0/(ρ0ω). For S h > 10, the duct can be considered wide. Under this assumption

the attenuation coefficient, which is the imaginary part of the wavenumber, of the fundamental mode
has been computed analytically by Weng et al. [17]. Originally derived for circular ducts [17], the
analytical solution for the downstream propagating mode can be written for two-dimensional ducts in
the presence of only viscous losses as follows:

α =
δ

√
2Hd(1 + M0)3/2

. (12)

In the numerical simulations, the attenuation coefficient is computed from the pressure signal on the
duct centerline using the matrix pencil method [18,19]. In order to quantify the losses in the duct, the
normalized attenuation α/α0 is introduced where α0 is the attenuation coefficient of the fundamental
mode in a quiescent medium.

Four different cases are considered for the FEM simulations. As in Section 3.1, they are defined
by the LNSE strategy, the resolution of the mesh and the polynomial orders px and py (see Table 3).

Table 3: Parameters of the simulations for the duct with uniform mean flow.

Case LNSE
strategy

Mesh Nx Ny px py Enrichment function(s)

LNS-Fine LNS Fine 510 120 2 2 -

LNS-Coarse LNS Coarse 120 2 10 2, 8 -

eLNS-hyp eLNS Coarse 120 2 10 2, 8 fhyp

eLNS-v eLNS Coarse 120 2 10 2, 8 fv

The normalized attenuation coefficient α/α0 obtained numerically is compared to the analytical
solution in Figure 7. For py = 2, the solutions obtained with LNS-Fine and eLNS-v overlap and



show a deviation of about 4.2% with the analytical solution. Thanks to enrichment, viscous losses
are captured using a coarse mesh. More pronounced discrepancies with the analytical solution are
obtained with eLNS-hyp, with deviation of about 20%. The poorest results are obtained for LNS-
Coarse, i.e. without enrichment. Increasing the polynomial order py from 2 to 8, no significant
change is observed in eLNS-v. On the contrary, a better agreement with analytical solution is obtained
in LNS-hyp when py = 8, as also reported for the waveguide problem in Section 3.1.
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Figure 7: Normalized attenuation of the fundamental mode obtained from the pressure perturbation
on the waveguide centerline computed using a vertical polynomial order equal to (a) py = 2 and
(b) py = 8.

The decomposition of the eLNS-v velocity profile |u′| into its polynomial and enriched components
has also been studied. The results obtained for py = 2 and 8 are very similar to those presented in
Figure 6. For the sake of conciseness, these results are not shown here.

4. CONCLUSIONS

A new high-order stabilized finite element formulation has been proposed to solve the linearized
Navier-Stokes equations in the frequency domain. This formulation can accurately predict the
propagation of acoustic waves in ducts accounting for visco-thermal losses and mean flow effects
provided that the mesh is sufficiently fine to capture the acoustic boundary layers. For industrial
problems, these simulations, however, are known to require high computational memory. To
tackle this shortcoming, an innovative enrichment strategy has been proposed in this study. It
consists in enriching the finite-element polynomial basis with analytical functions that reproduce
the visco-thermal and mean flow effects close to the walls. The enrichment strategy is based on a
H1-orthogonalization of each enrichment function with respect to the high-order polynomial basis
and to the other enrichment functions.

The performance of the enriched strategy is examined for a closed-end waveguide containing
a quiescent medium and for a duct with uniform mean flow. The enriched solutions are in good
agreement with the analytical reference results. The use of the enrichment strategy leads to a
significant reduction of the amount of memory required for the resolution compared to linearized
Navier-Stokes simulations performed without enrichment. The analysis reveals the benefits of the
enrichment strategy when low finite-element polynomial orders and coarse meshes are used. It is
also worth to mention that the construction of the enrichment basis is independent from the operator
(the linearized Navier-Stokes operator in this study). Therefore, the enrichment procedure could be
easily extended to other types of multiscale problems.
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APPENDIX: MATRICES OF THE 2D LINEARIZED NAVIER-STOKES EQUATIONS

The flux matricesAx andAy are defined as:

Ax =


0 1 0 0

−u0
2 − H0 u0 (3 − γ) −γmv0 γm

−u0v0 v0 u0 0

−(G0 + H0)u0 G0 − u0
2γm −u0v0γm γu0
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0 0 1 0

−u0v0 v0 u0 0

−v0
2 − H0 −γmu0 v0 (3 − γ) γm

−(G0 + H0)v0 −u0v0γm G0 − v0
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(13)

where R is the gas constant, H0 = (γ − 1) (E0 − cVT0 − ||u0||
2
2), G0 = E0 + RT0 and γm = γ − 1. The

matricesM−1,Aµ
i and Ei, j write as:

M−1 =



1 0 0 0

−
u0

ρ0

1
ρ0

0 0

−
v0

ρ0
0

1
ρ0

0

04 −
E0 − ||u0||

2
2

ρ0cV
−

u0

ρ0cV
−

v0

ρ0cV

1
ρ0cV


Aµ

i =



0 0 0 0

0 0 0 0

0 0 0 0
u0τ0(i, 1)

ρ0
+

v0τ0(i, 2)
ρ0

−
τ0(i, 1)
ρ0

−
τ0(i, 2)
ρ0

0


(14)

Ei, j =



0 0 0 0

0 −
4
3
µδi1δ j1 − µδi2δ j2

2
3
µδi1δ j2 − µδi2δ j1 0

0 −µδi1δ j2 +
2
3
µδi2δ j1 −µδi1δ j1 −

4
3
µδi2δ j2 0

0 Ei, j(4, 2) Ei, j(4, 3) −λtδi j


(15)

Ei, j(4, 2) = µ
[
u0

(
−

4
3
δi1δ j1 − δi2δ j2

)
+ v0

(
−δi1δ j2 +

2
3
δi2δ j1

)]
(16)

Ei, j(4, 3) = µ
[
v0

(
−

4
3
δi2δ j2 − δi1δ j1

)
+ u0

(
−δi2δ j1 +

2
3
δi1δ j2

)]
(17)

where
τ0 = ∇u0 + ∇u

T
0 −

2
3
∇ · u0I (18)

∇u0 and ∇ · u0 are the gradient and the divergence of the velocity, I is the identity matrix and ·T the
transpose operator. δi j is the Kronecker delta.
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