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ABSTRACT 21 

22 

Thermoacoustic instabilities have plagued the operation of gas turbine engines for years 23

and significant research is being conducted in detecting and understanding them. In this 24 

paper, an output only identification technique is employed for a noise induced dynamical 25 

system representing combustion instability behavior. This approach is called the Output 26 

only Observer Kalman filter identification (O3KID) and its first step solves for least 27 

squares from a set of algebraic equations constructed from just the measured output. The 28 

least squares solution gives the Markov parameters (impulse response) and the output 29 

residuals. The subsequent step takes the Markov parameters or the residuals to solve for 30 
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the system matrices using any deterministic sub-space identification method. In using this 31 

direct non-iterative two-step algorithm, it is possible to estimate the eigenmodes and 32 

damping coefficients from output measured data. To validate the algorithm, a system of 33 

independent harmonic oscillators, excited by random noise is used to generate surrogate 34 

data representing pressure oscillations in a combustor prior to an instability. The error 35 

in estimating the eigen frequencies and damping are <1%. This fast direct approach 36 

could be used to provide an early warning indicator in industrial gas turbines by tracking 37 

the rate of damping of dominant eigenmodes. Additionally, saving the state space 38 

parameters periodically can serve as a data-lean option to track changes of the dynamics 39 

and across a gas turbine fleet. 40 

 41 

1. INTRODUCTION 42 

 Thermoacoustic instability prediction remains a major hurdle in the development of 43 

lean premixed gas turbine engines despite significant research over the last few decades. 44 

Lean premixed combustion is particularly susceptible to combustion instabilities, which 45 

are pressure and heat release oscillations originating from the coupling between the 46 

acoustics, fluid dynamics and combustion. When the relative phase coincides, these 47 

sources cause a positive feedback loop to occur which ultimately increases the amplitude 48 

of pressure oscillations in the combustor. At very high amplitudes they can destabilize the 49 

flame and significantly increase the loads on the combustor. In these adverse 50 
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circumstances, it is paramount that the onset of these unstable modes be estimated 51 

accurately and in good time.  52 

Reliable monitoring of combustion instabilities in real time has been sought after and has 53 

been researched significantly. Possibly the simplest output only identification would be 54 

observing the envelope of the signal generated from the combustor. Since then, methods 55 

have been proposed to infer holistic information about the dynamic behavior of the engine. 56 

Lieuwen [1] proposed a method to extract damping rates of certain dominant modes as a 57 

parameter to monitor instabilities. The damping rates were extracted from the 58 

autocorrelation of the incoming signal. The same method was extended to monitor multiple 59 

modes by applying it in the frequency domain. [2] Recently, some methods were proposed 60 

to extract modal information from the signal’s underlying stochastic forcing or system 61 

noise models. The underlying turbulence acting as the stochastic forcing contain a wealth 62 

of information about the mechanisms which trigger thermoacoustic instabilities [3,4]. 63 

Merck et al. [5] used noise corrupted data and employed a Box-Jenkins modeling approach 64 

to identify the system dynamics in the form of flame transfer function (FTF) and the 65 

stochastic noise models simultaneously. Bonciolini et. al [6] estimated that the linear 66 

growth rates in a nonlinear oscillator excited by noise with unknown statistics could be 67 

identified if the data is band passed around the eigenfrequency of interest.  68 

The method proposed in this paper aims to model the dynamics of an oscillator as a state 69 

space model, from which the system dynamics are identified. Rouwenhorst et al. [7] 70 

employed a state space model successfully to identify the dynamics in annular combustion 71 

systems, albeit the identification requires the measured output to be band passed around 72 

the frequencies of interest. In this paper, we propose to use a state space model to identify 73 



Pre-
pri

nt

Journal of Gas turbine and Power 

4 

Balasubramanian   GTP-22-1598 

over all possible frequencies for output only data. The observer/Kalman filter identification 74 

(OKID) algorithm proposed by Juang et al. is an effective identification technique in the 75 

time domain and can extract the system Markov parameters from any continuous input–76 

output case. This method has been widely used in vibration modal analysis and structural 77 

damage detection [8]. An extension of this method proposed by Vicario et.al, [9] is applied 78 

to output only data and is termed O3KID. This method is used as a framework to estimate 79 

the modal characteristics of a dynamical system representing thermoacoustics.   80 

 81 

2. METHODOLOGY 82 

The mathematical model of a linear dynamical system is represented in the following 83 

state space form 84 

 85 

𝑥(𝑖 + 1) = 𝐴𝑥(𝑖) + 𝐵𝑢(𝑖) + 𝑤𝑝
′ (𝑖) 86 

𝑦(𝑖) = 𝐶𝑥(𝑖) + 𝐷𝑢(𝑖) + 𝑤𝑚′(𝑖) 87 

 88 

x is a vector with state variables, i.e., the degrees of freedom of the model. The state 89 

matrix A describes the evolution of the dynamics as the time evolves. The system can be 90 

perturbed by a dynamic input u (for example a loudspeaker), acting upon the state of the 91 

system through input matrix B. Further, the system may be perturbed by a noise source 𝑤𝑝, 92 

maybe caused by turbulence upstream of the combustor. A sensor measures some output y 93 

of the system, which is a linear combination of the state variables x through the output 94 

matrix C. The sensor may also directly pick up the input through D and be subject to 95 

measurement noise 𝑤𝑚.  96 

(1) 

w 
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 97 

When the stochastic input is unknown, the state space model reduces to  98 

 99 

𝑥(𝑖 + 1) = 𝐴𝑥(𝑖) + 𝑤𝑝(𝑖) 100 

𝑦(𝑖) = 𝐶𝑥(𝑖) + 𝑤𝑚(𝑖) 101 

 102 

where 𝑤𝑝 and 𝑤𝑚 are processes including the original process and measurement noises 103 

and the effect of the unknown input on the state equation (𝐵𝑢(𝑖)) and on the feedthrough 104 

term (𝐷𝑢(𝑖)). 105 

In state-space model identification, the main difficulty is that both the sequence of 106 

states x(k) and the matrices A and C 107 

are unknown. The identification problem is then nonlinear. The keystone of the system 108 

identification model used in this paper is the use of a state observer to estimate the actual 109 

system state and overcome the nonlinearity of the problem. The state observer of the form 110 

of a Kalman filter (𝐾) is introduced to estimate the current state from the previous known 111 

states of the dynamic system. The observer gain matrix K is introduced to construct the 112 

following optimal observer for the system to estimate the actual system state: 113 

 114 

with 115 

𝜖𝑖 = 𝑦𝑖 − 𝑦̂𝑖 116 

 117 

where, 𝜖𝑖 are the predicted output residuals, 𝑥̂𝑖 is the predictor state vector, 𝑦̂𝑖 is the 118 

predicted output, 𝐾 is the observer/ predictor Kalman gain. The observer in the equations 119 

(2) 

 

(3) 
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of (3), called the innovation form is in the form of a one-step-ahead state predictor; that is, 120 

it provides an estimate 𝑥̂𝑖+1 for the next state 𝑥𝑖+1  from  the current state estimate 𝑥̂𝑖 and 121 

output measurement 𝑦𝑖. The innovation form of the Kalman filter in eq (3), can be 122 

expressed in an equivalent form,  123 

 124 

𝑥̂𝑖+1 = 𝐴̅𝑥̂𝑖 + 𝐾𝑦𝑖 125 

𝑦𝑖 = 𝐶𝑥̂𝑖 + 𝜖𝑖 126 

 127 

Where 𝐴̅ = 𝐴 − 𝐾𝐶. This form of the Kalman filter is called the bar form and is 128 

analogous with the observer form expressed earlier 129 

 130 

 131 

 132 

Substitute past p-1 predictions of x,  133 

𝑥̂𝑖 = 𝐾𝑦𝑖−1 + 𝐴̅𝐾𝑦𝑖−2 + ⋯ 134 

+𝐴̅𝑝−1𝐾𝑦𝑖−𝑝 + 𝐴̅𝑝𝑥̂𝑖−𝑝 135 

 136 

When p is big enough, 𝐴̅𝑝𝑥̂𝑖−𝑝 may be neglected 137 

 138 

𝑦𝑖 = 𝐶𝑥̂𝑖 + 𝜖𝑖 139 

𝑦𝑖 = 𝐶𝐾𝑦𝑖−1 + 𝐶𝐴̅𝐾𝑦𝑖−2 + ⋯ 140 

+𝐶𝐴̅𝑝−1𝐾𝑦𝑖−𝑝 + 𝜖𝑖 141 

 142 

(4) 

 

(5) 
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𝑦𝑖 = Φ𝑣𝑖 + 𝜖𝑖 143 

 144 

With 145 

Φ = [𝐶𝐾 𝐶𝐴̅𝐾 𝐶𝐴̅2𝐾 …𝐶𝐴̅𝑝−1𝐾] 146 

𝑣𝑖 = [𝑦𝑖−1 …𝑦𝑖−𝑝]
𝑇
 147 

 148 

where, Φ contains the sequence of observable Markov parameters, impulse of the 149 

observer, which corresponds to the unit impulse response of a discrete-time linear system. 150 

Equation (6) relates the current value to a linear combination of past values, which is the 151 

general form of an autoregressive model. [10]  152 

 153 

Considering all possible time shifted versions of 𝑦𝑖 in a time series of length 𝑙: 154 

 155 

𝑌 = Φ𝑉 + 𝐸 156 

With  157 

𝑌 = [𝑦𝑝 𝑦𝑝+1 …𝑦𝑝+𝑙−1] 158 

𝑉 = [𝑣𝑝 𝑣𝑝+1 …𝑣𝑝+𝑙−1] 159 

𝐸 = [𝜖𝑝 𝜖𝑝+1 …𝜖𝑝+𝑙−1] 160 

 161 

The above set of equations form the basis of the O3KID. The least squares solution of 162 

(8) provides an estimate of the observer Markov parameters. The O3KID model reduces 163 

the output data to a reduced set of impulse response (Markov parameters) and reduces the 164 

identification to a purely deterministic modal identification problem. The Kalman filter 165 

(6) 

 

(7) 

 

(8) 

 

(9) 

 

(10) 

 
(11) 
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gain (K) should in theory (from eq (3)) filter process noise from measurements since it is 166 

a function of the error covariances. OKID formulation uses the Kalman filter as an observer 167 

to convert the state space identification of a noisy data into a simpler deterministic problem. 168 

[8] Following this, any deterministic subspace identification method such as Eigenvalue 169 

realization (ERA), deterministic intersection (DI), deterministic projection (DP) and others 170 

could be used. A detailed review of these methods is presented in Overschee et al [11].  171 

In this paper, the Eigenvalue realization method is used to identify the state matrix A, 172 

the output matrix C and the Kalman gain K. The reader is guided to [11] for detailed 173 

derivation of the ERA method. The ERA is an effective tool for modal parameter extraction 174 

and is applicable to multi-output systems. The goal of the ERA is to construct a Hankel 175 

matrix by using the impulse response of the system; then, singular value decomposition is 176 

used to obtain the minimum realization.  177 

The first step in the algorithm is to form a Hankel matrix using the Markov parameters,  178 

 179 

𝐻0 =

[
 
 
 
 𝐶𝐾 𝐶𝐴𝐾 … 𝐶𝐴

𝑁
2
−1𝐾

𝐶𝐴𝐾 𝐶𝐴2𝐾 … 𝐶𝐴
𝑁
2𝐾

⋮

𝐶𝐴
𝑁
2
−1𝐾

⋮

𝐶𝐴
𝑁
2𝐾

⋱
…

⋮
𝐶𝐴𝑁−2𝐾]

 
 
 
 

  180 

 181 

Which gives a relationship between the Markov parameters and the observability and 182 

controllability matrices. Singular value decomposition is then performed on 𝐻0. 183 

 184 

𝑆𝑉𝐷 𝑜𝑓 𝐻0 = 𝑈1𝑆1𝑉1
𝑇 185 

 186 

(12) 

 

(13) 
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The non-zero singular values of 𝑆1, will give the order of an ideal system. In this study 187 

the presence of noise will prevent the singular value to reach zero, however the order of 188 

the system could be identified. To identify the state matrix A, another Hankel matrix is 189 

constructed using the Markov parameters,  190 

 191 

𝐻1 =

[
 
 
 
 𝐶𝐴𝐾 𝐶𝐴2𝐾 … 𝐶𝐴

𝑁
2𝐾

𝐶𝐴2𝐾 𝐶𝐴3𝐾 … 𝐶𝐴
𝑁
2
+1𝐾

⋮

𝐶𝐴
𝑁
2𝐾

⋮

𝐶𝐴
𝑁
2
+1𝐾

⋱
…

⋮
𝐶𝐴𝑁−1𝐾]

 
 
 
 

   192 

 193 

which relates to the observability and controllability matrices as,  194 

𝐻1 = 𝑈1𝑆1

1
2 𝐴 𝑆1

1
2𝑉1

𝑇 195 

 196 

 197 

 198 

From the previous relation, the state matrix is,  199 

 200 

𝐴 = 𝑆1
−1/2

𝑈1
𝑇𝐻1𝑉1𝑆1

−1/2
 201 

 202 

After discrete-time system identification has been accomplished, an eigenvalue 203 

decomposition is performed on the state matrix 𝐴 for extracting the eigenmodes and its 204 

corresponding damping coefficients. From the above, two key steps of the O3KID-ERA 205 

method are impulse response estimation using O3KID and mode extractions based on the 206 

ERA algorithm.  207 

Observability Controllability 

(14) 

 

(15) 
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 208 

Computational complexity of the proposed O3KID-ERA method is mainly determined 209 

by two steps in the algorithm, that is estimating Markov parameters by employing O3KID 210 

and extracting reduced-order state matrix using ERA algorithm. The Markov parameters 211 

estimation is a process that reconstructs measured data in the form of a one-step-ahead state 212 

predictor and solves a least squares problem. Longer observation of the past horizon leads 213 

to higher orders of the least-square problem, which requires the most computational effort 214 

in the proposed method. Once the work is done, the thermoacoustic modes can be identified 215 

using ERA. In practical applications, based on the operating experience or low order 216 

network modeling, signals with good observability for the modes of interest will be 217 

selected as the inputs, which can reduce the computational burden. Moreover, with multi-218 

core processing and parallel computing, the proposed method could be developed at 219 

minimal computational cost and has the potential to be applied as an online system 220 

identification technique. 221 

 222 

2.1 Generating Surrogate data 223 

 224 

To model pressure fluctuations from a combustor, a harmonic oscillator model is used to 225 

generate surrogate data. The harmonic oscillator is excited by white noise initially and 226 

then the cases with colored noise are considered.    227 

 228 

 229 

 230 

(16) 

 

[
𝑥̇
𝑦̇
] = [

0 1
−𝜔2 −2χ𝜔

] [
𝑥
𝑦] + [

𝜉
0
] 
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The above harmonic oscillator model is solved for the displacement for a defined exciting 231 

frequency 𝜔 and a damping coefficient 𝜒. To generate the necessary data, three harmonic 232 

oscillators -with three unique eigen frequencies and damping coefficients were excited by 233 

stochastic forcing(𝜉 ). For the baseline case, the system was excited with white noise and 234 

then by colored noise subsequently. For representation, a system with three frequencies 235 

100Hz, 250Hz and 450Hz were excited uniformly with the same stochastic input and the 236 

modes were damped with a damping of 0.025 which produces the spectrum as seen in Fig 237 

1. Throughout, a range of different damping coefficients and noise characteristics were 238 

chosen and will be discussed in upcoming sections. To generate the data, a sampling 239 

frequency of 10kHz was considered and the time series is generated up to 6s. The time 240 

domain data is divided into 100 windows, with 0.06s of data per window. For the 241 

frequencies chosen, a sampling rate of 10kHz was appropriate. During an instability, the 242 

unstable modes approach zero damping and hence we limited the range of damping from 243 

0 to 0.10 beyond which the mode may be too damped for a high amplitude amplification.  244 

 245 
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 246 

FIGURE 1: Frequency response of the generated surrogate data (in the subplot) with three 247 

unique eigen frequencies 100Hz, 250Hz and 450Hz, with 0.025 as damping coefficient 248 

 249 

 250 

3. RESULTS AND DISCUSSION 251 

 252 

The O3KID/ERA method is applied to the generated surrogate data and its estimation 253 

behavior is discussed in this section. A comparison of the model generated spectrum and 254 

the FFT spectrum shows good agreement as shown in Fig 2. The frequency spectrum 255 

generated is an average over 100 windows of data. The identified spectrum had three 256 

observable peaks at 100Hz, 250Hz and 450Hz, with an average identification error <1%. 257 

The spectrum generated by exploring the frequency response of the transfer function 258 

created using the identified state matrix, Kalman filter gain and output matrix. The observer 259 
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Kalman filter gain K in this formulation represents the input as expressed in the 260 

Methodology section. 261 

 262 

FIGURE 2: Estimated spectrum from the O3KID/ERA method in comparison with the FFT 263 

spectrum of the signal. 264 

  265 

 Parametric estimation models often face issues of under-fitting and overfitting. In 266 

this method, since the estimation of the state  267 

matrix is performed using a singular value decomposition (SVD), it is possible to 268 

successfully truncate the system to accommodate only the most energetic modes. In Fig 269 

3, the singular value drops to zero at order 6, which is the right and sufficient order to 270 

completely determine a system with three eigen frequencies, which have 6 degrees of 271 

freedom.   272 
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 273 

FIGURE 3: Singular values plotted for the generated surrogate data for all possible model 274 

orders. 275 

Choosing the model orders for real combustor data might require more guile. This 276 

is because the drop off in singular values are not as abrupt as in Fig 3. In this analysis, the 277 

order which encompasses 95% of the total energy in the spectrum is truncated, which 278 

turned out to be 10 modes (Fig,4). Based on the computational power and the complexity 279 

of the system different thresholds could be set and further analysis could be carried out on 280 

those truncated sets. Having the right information in as few modal parameters as possible 281 

helps in its applicability as an online system identification method. With OKID/ERA, since 282 

the distribution of eigenmodes in the eigenspace is according to its singular values or 283 

energy, the identification of the most energetic or important eigenmodes is straightforward 284 

unlike other parametric identification methods where peak picking routines are used to 285 

identify the most energetic modes.  286 

 287 
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The system identification method determines modal frequencies quite well under 288 

white noise excitation. Combustor data however is not necessarily excited by white noise. 289 

In most practical cases, combustor data is excited by colored noise. [6] A colored noise 290 

stochastic forcing is introduced and its effect on estimating the modal frequencies of the 291 

system 292 

 293 

FIGURE 4: Error in eigen frequency estimation from the O3KID/ERA method in 294 

comparison with the defined eigenfrequencies of the signal. 295 

Stochastic forcing is generated using inverse frequency coloured noise depicting 296 

pink (𝑓−1) and brown noise (𝑓−2), where the power spectrum is constantly decreasing. A 297 

Monte-Carlo simulation with 100 different stochastic input is recorded with each 298 

simulation generating 0.06s of data and the identification of the eigen frequencies is shown 299 

within the confidence limits.   Fig 4 shows that the identification of eigenfrequencies is 300 

quite reliably <1% error, though the excited stochastic noise is non-white. Damping 301 
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coefficient estimates (shown in Fig.5) averaged for the each eigenmode show an average 302 

error rate ~1% and a maximum error rate at 2.5%. 303 

 304 

FIGURE 5: Error in damping coefficient estimation from the O3KID/ERA method in 305 

comparison with the defined damping of the signal. 306 

 Interestingly, the estimates of damping improve significantly when the system 307 

approaches zero damping, which implies the methodology can identify the approach of 308 

an instability with very high accuracy. Such reliable damping estimation could be used as 309 

a precursor for combustion instability.  310 

 311 

 312 

3.1 System identification of combustor data 313 

 314 

Combustor data acquired for analysis is used to validate the algorithm. The combustor 315 

data used for the analysis exhibits combustion instability with linear growth rate. Since 316 
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this is complex data with unknown stochastic input, an output only model could only be 317 

used to identify the modal information. System order is determined from the distribution 318 

of the modal energy. The system order is refreshed for every window of data and a 319 

snapshot of the cumulative energy distribution is shown in Fig. 6. A 10th order model is 320 

shown to include 95% of all modal energy in this system. This is quite promising since 321 

real combustor data could be defined in a 10th order system matrix and its decomposition 322 

will give the 5 eigen modes. With apriori knowledge regarding eigenmodes of interest, 323 

order of the system could be further reduced, and the identification simplified. 324 

 325 

 326 

FIGURE 6: Cumulative energy distribution plotted for the combustor data for all possible 327 

model orders. 328 

 329 

The combustor data in Fig.7, at the black line in the time trace depicts the conditions 330 

where it’s under normal operation and the pressure oscillations are at a manageable level. 331 

The data shows some measurement noise from the sensors which are captured by the 332 

system identification model in red., with the highest noise at ~50Hz.   333 

 334 
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 335 

FIGURE 7: Combustor under normal operating conditions. Top: time domain 336 

combustor data; black line represents the position of the pressure-time trace, Bottom: 337 

Corresponding frequency spectrum for the window of time domain data; blue line 338 

represents FFT of the data and black line represents the spectrum from O3KID/ERA   339 

 340 

The combustor data in Fig.8 at the black line in the time trace depicts the conditions 341 

where the combustor exhibits thermo-acoustics at 171 Hz and the pressure oscillations 342 

are at very high levels with potential to cause damage. The identification successfully 343 

captures the high amplitude 171Hz mode and its second harmonic with much lower 344 

amplitude at 340Hz. The amplitude of the distribution away from the eigenmodes are not 345 

captured sufficiently well, this could be attributed to the residual truncated modal energy 346 

ignored during the identification process.  347 
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The O3KID/ERA algorithm quite efficiently identifies the modal frequencies of the 348 

system excited by unknown noise dynamics. This could be used as an online 349 

identification of thermoacoustic mode from tracking the corresponding growth rates of 350 

these eigenmodes. There is a possibility to estimate the noise covariances from the 351 

observer Kalman gain, which could provide insight on the stochastic turbulence forcing 352 

on the combustion process, which is being actively pursued. The simulations are 353 

processed in Matlab software on a Windows 10 operating system running on Intel(I) Core 354 

(TM) i7-9700K CPU @ 3.60GHz processor. 355 

 356 

FIGURE 8: Combustor under thermoacoustic excitation Top: time domain combustor data; 357 

black line represents the position of the time trace, Bottom: Corresponding frequency 358 

spectrum for the window of time domain data; blue line represents FFT of the data and 359 

black line represents the spectrum from O3KID/ERA 360 
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4. CONCLUSION 361 

 362 

In this paper, a new system identification method for modeling real combustor data is 363 

introduced. The O3KID model reduces the output data to a reduced impulse response 364 

(Markov parameters) and reduces the identification to a purely deterministic modal 365 

identification problem. Further, the Eigen Value realization algorithm (ERA) uses the 366 

system impulse responses to identify the dynamics of the system. This algorithm is first 367 

applied on surrogate data and its performance is analyzed. The algorithm has an error rate 368 

<1% in identifying the eigenmodes of the system and an error rate around 1% in 369 

identifying its corresponding damping rates irrespective of the nature of stochastic input. 370 

Damping coefficient could be tracked over time and used as a precursor for instability. 371 

The model is then applied to real combustor data and the model identifies the thermo-372 

acoustically excited eigen mode at 171Hz. The system matrix, a concise dataset 373 

containing all the dynamics of the system, could be used for long term system 374 

monitoring. This could also be used as an early warning system identification if the 375 

model adapts to processing constraints in real time processing systems. 376 

 377 
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Figure Captions List 430 

 431 

Fig. 1 Frequency response of the generated surrogate data (in the subplot) with 

three unique eigen frequencies 100Hz, 250Hz and 450Hz, with 0.025 as 

damping coefficient. 

Fig. 2 Estimated spectrum from the O3KID/ERA method in comparison with the 

FFT spectrum of the signal.  

Fig. 3 Singular values plotted for the generated surrogate data for all possible 

model orders 

Fig. 4 Error in eigen frequency estimation from the O3KID/ERA method in 

comparison with the defined eigenfrequencies of the signal. 

Fig. 5 Error in damping coefficient estimation from the O3KID/ERA method in 

comparison with the defined damping of the signal.  

Fig. 6 

 

 

Fig. 7 

 

 

 

 

 

 

 

 

 

 

 

Fig 8 

Cumulative energy distribution plotted for the combustor data for all 

possible model orders.  

Combustor under normal operating conditions. Top: time domain 

combustor data; black line represents the position of the pressure-time 

trace, Bottom: Corresponding frequency spectrum for the window of time 

domain data; blue line represents FFT of the data and black line represents 

the spectrum from O3KID/ERA 

 

Combustor under thermoacoustic excitation Top: time domain combustor 

data; black line represents the position of the time trace, Bottom: 

Corresponding frequency spectrum for the window of time domain data; 
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blue line represents FFT of the data and black line represents the spectrum 

from O3KID/ERA  
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