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ABSTRACT 

In this paper, we take advantage of using a Green’s function approach as an analytical tool to study 

linear and nonlinear aspects of thermoacoustic systems. Green’s function is defined as the impulse 

response of a system; it has a clear physical meaning in combustion systems, and it provides a fast 

and flexible tool to predict thermoacoustic instabilities in both time and frequency domains. In this 

study, we consider a tube, which houses two sources: a heat source and an external noise source. 

The heat source is modelled by an amplitude-dependent  nτ-law, the noise source is assumed to 

emit two types of noise (pink noise or white noise). We use the Green's function approach to derive 

an integral equation for the acoustic field in the Rijke tube, and we also derive an algebraic equation 

for the thermoacoustic eigenfrequency. Both equations are validated. The results that we found, 

show that the presence of noise (whether pink or white noise) results in “triggering” an instability 

and in accelerating the growth of the amplitude. These effects become more pronounced as the level 

of noise increases. The influence of pink noise is stronger than that of white noise. We also studied 

how the hysteresis behavior (a nonlinear effect in dynamical systems) is affected by the noise, using 

the heater power as bifurcation parameter. Our study reveals that the width of the bistable region 

decreases as the strength of noise increases. 

 

1.    INTRODUCTION 

   Development of new combustion systems to reduce the pollutants and increase the performance 

of combustion systems motivated scientists to study combustion instabilities in detail. Thermo-

acoustic instabilities occur due to the feedback mechanism between the flame and acoustic waves 

within the combustion chamber. The importance of predicting the thermoacoustic instabilities based 

on an analytical method led to applying a Green’s function approach to thermoaocustic systems in 

both time and frequency domains [1][2][3]. Using a Green’s function approach and combining it 

with Lighthill’s acoustic analogy equation with a nonlinear forcing term in [3] exhibited the capa-

bility of this method to capture limit cycle amplitudes and hysteresis effects.  
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   Combustion systems are inherently noisy. This motivated many investigations to include different 

types of the noise in the system [4][5]. The nonlinear dynamical behaviors (e.g., limit cycle, trigger-

ing and hysteresis effects) of such systems have been observed in experimental and analytical 

methods. [6][7] 

   In order to assess the capability of a Green’s function approach to explore different phenomena in 

the presence of noise, we considered two types of noise (white and pink noise), coming from an ex-

ternal source. In section 2, we describe the mathematical model using our Green’s function ap-

proach. In section 3, the flame model and noise model will be presented. In section 4, the governing 

equation is given to predict thermoacoustic instabilities. Finally, section 5 will present some results 

in the presence of noise. 

 

2.    The tailored Green’s function  

   The tailored Green’s function is determined as an impulsive response of the system with point 

source at (𝑥′, 𝑡′) observed at (𝑥, 𝑡) with defined boundaries Equation (1). It is assumed that Green’s 

function can be written as superposition of modes Equation (2) for a tube shown in Figure 1. 

𝐻(𝑡 − 𝑡′) denotes the Heaviside function; 𝑔𝑛  is modal amplitude and 𝜔𝑛 is modal frequency in 

Green’s function. 

 

 

 

 

 

 

Figure 1: Tube of length L with inlet and outlet reflection coefficients (𝑅0, 𝑅𝐿) and an interface with 

temperature jump within the tube at 𝑥𝑞 that divides the tube into regions A and B. The reflection 

and transmission coefficients for the interface are 𝑅𝐴𝐵, 𝑇𝐴𝐵, 𝑅𝐵𝐴 and 𝑇𝐵𝐴. 

 

   The temperature, density and the speed of sound in the cold region (A) are 𝑇ത1, 𝜌ҧ1, 𝑐1, and in the 

hot region (B), they are 𝑇ത2, 𝜌ҧ2, 𝑐2, respectively.  

 

1

𝑐2

𝜕2𝐺

𝜕𝑡2
−

𝜕2𝐺

𝜕𝑥2
= 𝛿(𝑥 − 𝑥′)𝛿(𝑡 − 𝑡′) 

(1) 

𝐺(𝑥, 𝑥′, 𝑡, 𝑡′) = 𝐻(𝑡 − 𝑡′) 𝑅𝑒 ෍ 𝑔𝑛(𝑥, 𝑥′)𝑒−𝑖𝜔𝑛(𝑡−𝑡′) 

∞

𝑛=1

 (2) 

   In order to obtain the modal frequencies and amplitudes in Equation (2), we use the equations de-

rived by [2]; these are given below in Equations (3) and (4). The characteristic equation (Equation 

(3)) can be solved with a numerical root finding method (e.g., Newton Raphson method).  

 

𝐹(𝜔) = 𝑒−𝑖𝑘1𝑥𝑞 𝑒𝑖𝑘2൫𝑥𝑞−𝐿൯ − 𝑅𝐵𝐴𝑅𝐿 𝑒−𝑖𝑘1𝑥𝑞 𝑒−𝑖𝑘2൫𝑥𝑞−𝐿൯ − 𝑅0𝑅𝐴𝐵𝑒𝑖𝑘1𝑥𝑞 𝑒𝑖𝑘2൫𝑥𝑞−𝐿൯

+ 𝑅0𝑅𝐿 𝑒𝑖𝑘1𝑥𝑞  𝑒−𝑖𝑘2൫𝑥𝑞−𝐿൯ (𝑅𝐴𝐵𝑅𝐵𝐴 − 𝑇𝐴𝐵𝑇𝐵𝐴) 
 

(3) 

   The modal amplitudes are calculated from Equation (4), 

𝑅0 

𝑥 = 0 𝑥 = 𝑥𝑞 𝑥 = 𝐿 

𝑅𝐿 

𝑅𝐴𝐵 

𝑇𝐴𝐵 

𝑅𝐵𝐴 

𝑇𝐵𝐴 A B 
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𝑔𝑛(𝑥, 𝑥′) =
𝑐2𝑔ො(𝑥, 𝑥′, 𝜔)

𝜔𝑛 𝐹′(𝜔𝑛)
 

(4) 

where 

𝑔ො = ቐ

𝐴(𝑥, 𝜔) 𝐵(𝑥′, 𝜔)

𝐵(𝑥′, 𝜔) 𝐶(𝑥, 𝜔)

𝐶(𝑥′, 𝜔) 𝐵(𝑥, 𝜔)
 

0 < 𝑥 < 𝑥𝑞

𝑥𝑞 < 𝑥 < 𝑥′

𝑥′ < 𝑥 < 𝐿

 
(5) 

𝐴(𝑥, 𝜔) = 𝑇𝐵𝐴 ൫𝑅0 𝑒𝑖𝑘1𝑥 + 𝑒−𝑖𝑘1𝑥൯ (6) 

𝐵(𝑥, 𝜔) = 𝑒𝑖𝑘2(𝑥−𝐿) + 𝑅𝐿 𝑒−𝑖𝑘2(𝑥−𝐿) (7) 

𝐶(𝑥, 𝜔) = 𝑒𝑖𝑘2(𝑥−𝑥𝑞) ൫𝑅𝐵𝐴𝑒−𝑖𝑘1𝑥𝑞 + 𝑅0 𝑒𝑖𝑘1𝑥𝑞൯ + 𝑒−𝑖𝑘2(𝑥−𝑥𝑞) ൫𝑒−𝑖𝑘1𝑥𝑞 − 𝑅𝐴𝐵𝑅0𝑒𝑖𝑘1𝑥𝑞൯ (8) 

 

3.    Heat release rate and noise models 

   In this paper, the heat release rate is modelled by a generalized n𝜏-law model, given in Equation 

(9). K is the heater power, and it is given in Equation (10). The terms 𝑛0, 𝑛1 and 𝜏 depend on the 

amplitude A of the acoustic field in the tube, as shown in Equations (11)-(14). We assume that the 

heat source is a point source at position ൫𝑥𝑞൯ , and describe it by 𝑞(𝑡, 𝑥) = 𝑞(𝑡)𝛿(𝑥 − 𝑥𝑞), 

 

𝑞(𝑡) = 𝐾 ൣ𝑛1𝑢𝑞(𝑡 − 𝜏) − 𝑛0𝑢𝑞(𝑡)൧ (9) 

𝐾 =
𝑄ത

𝑈ഥ𝑠𝜌ҧ
 

(10) 

𝑛1 =
𝑔𝑚𝑎𝑥(𝐴) + 1

2
 

(11) 

𝑛0 =
𝑔𝑚𝑎𝑥(𝐴) − 1

2
 

(12) 

𝑔𝑚𝑎𝑥=𝑔0 − 𝑔1 ൬
𝐴

𝑈ഥ
൰ 

(13) 

𝜏 = 𝜏0 + 𝜏2 ൬
𝐴

𝑈ഥ
൰

2

 
(14) 

   The noise is considered as an external acoustic source, also concentrated at the point 𝑥𝑞. We de-

scribe it by a forcing term, which is added to the heat source term in Lighthill's acoustic analogy 

equation. Two types of noise will be considered: white and pink noise. The main difference be-

tween these two noise types is in the frequency spectrum of the power density: in white noise, the 

power density does not change with frequency, whereas in pink noise it decreases significantly as 

the frequency increases. It has been established that the features of colored noise are a better repre-

sentation for the noisy environment found in combustion systems [8]. 
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4. Derivation of integral governing equation in presence of the noise 
 

   The derivation of the integral governing equation in the absence of noise has been described in 

detail in [3]. If noise is present, a forcing term due to noise enters the picture (see Equation (15), 

where 𝐹𝑛(𝑥, 𝑡) denotes the noise term).  

 

1

𝑐2
 
𝜕2𝜙

𝜕𝑡2
−  

𝜕2𝜙

𝜕𝑥2
=  −

𝛾 − 1

𝑐2
 𝑞(𝑥, 𝑡) + 𝐹𝑛(𝑥, 𝑡) (15) 

   The initial conditions for our system are set as  

𝜙(𝑥, 0) = 𝜑0 𝛿(𝑥 − 𝑥𝑞) 
𝜕𝜙(𝑥, 0)

𝜕𝑡
= 𝜑0

′  𝛿(𝑥 − 𝑥𝑞) (16) 

   By combining Equation (15) and Equation (2), we obtain the integral governing equation given in 

Equation (17). In order to find the time evolution of the thermoacoustic system, we use Equation 

(17) and solve it numerically with an iteration in time. This gives the time history of the acoustic 

field (see [3]).  We consider noise term as a point source at the flame position, so 𝐹𝑛(𝑥, 𝑡) =
𝐹𝑛(𝑡)𝛿(𝑥 − 𝑥𝑞) 

 

𝑢𝑞(𝑡) =  
𝜕𝜙

𝜕𝑥
ฬ

𝑥=𝑥𝑞

= −
𝛾 − 1 

𝑐2
 න

𝜕𝐺(𝑥, 𝑥′, 𝑡, 𝑡′)

𝜕𝑥
ቤ

𝑥=𝑥𝑞

𝑥′=𝑥𝑞

𝑞(𝑡′) 𝑑𝑡′

𝑡

𝑡′=0

+ න
𝜕𝐺(𝑥, 𝑥′, 𝑡, 𝑡′)

𝜕𝑥
ቤ

𝑥=𝑥𝑞

𝑥′=𝑥𝑞

 𝐹𝑛(𝑡′) 𝑑𝑡′

𝑡

𝑡′=0

−  
𝜑0

𝑐2
 

𝜕𝐺

𝜕𝑥𝜕𝑡′
ฬ 𝑥=𝑥𝑞

𝑥′=𝑥𝑞

𝑡′=0

+
𝜑0

′

𝑐2
 
𝜕𝐺

𝜕𝑥
ฬ 𝑥=𝑥𝑞

𝑥′=𝑥𝑞

𝑡′=0

 

(17) 

  

   One of the advantages of using a Green’s function approach for thermoacoustic systems is its ca-

pability to give results not only in the time domain, but also in the frequency domain. In order to 

perform a frequency-domain analysis, we write the acoustic field as superposition of heat-driven 

modes with frequencies Ω𝑚 and velocity amplitudes 𝑢𝑚; this is shown in Equation (18). 

 

𝑢𝑞(𝑡) = ෍ ൫𝑢𝑚𝑒−𝑖𝛺𝑚𝑡 + 𝑢𝑚
∗ 𝑒𝑖𝛺𝑚

∗ 𝑡൯

∞

𝑚=1

 
(18) 

   Ω𝑚is complex; its real part gives the heat driven frequencies, and its imaginary part gives the   

growth rates. By using the Equation (18) and substituting it into the integral governing equation 

(17), we find a set of equations (Equations (19) and (20)) that provides the information about heat 

driven frequencies and growth rates. In addition, we can find the heat driven velocity amplitudes. 

(For more details, see [3]) 
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൫𝑛1𝑒𝑖𝛺𝑚𝜏 − 𝑛0൯ ൬
𝐺𝑛

𝑖(𝜔𝑛 − 𝛺𝑚)
+

𝐺𝑛
∗

𝑖(−𝜔𝑛
∗ − 𝛺𝑚)

൰ = −
2𝑐2

𝐾(𝛾 − 1)
 (19) 

 

 

𝑢𝑚൫𝑛1𝑒𝑖𝛺𝑚𝜏 − 𝑛0൯

𝑖(𝜔𝑛 − 𝛺𝑚)
+  

𝑢𝑚
∗ ൫𝑛1𝑒−𝑖𝛺𝑚

∗ 𝜏 − 𝑛0൯

𝑖(𝜔𝑛 + 𝛺𝑚
∗ )

=
𝐹𝑛 ൫𝑒𝑖𝜔𝑛𝑡 − 1൯

𝑖𝜔𝑛
 ×

𝑐2

𝐾(𝛾 − 1)
+

𝑖𝜔𝑛𝜑0 + 𝜑0
′

𝐾(𝛾 − 1)
 

(20) 

 

5.   Results  

   In order to validate the time and frequency domain approaches using Green’s function to find the 

acoustic field, we performed a comparison between these two different approaches. To have an in-

sight about the stability behavior of a thermoacoustic system, we can use Equation (19) to produce a 

stability map. Hence, we consider  a Rijke tube  (𝑅0 = −1, 𝑅𝐿 = −1), that its length is 𝐿 = 2. The 

temperature in the cold and hot regions are 𝑇ത𝐴 = 304 𝐾 and 𝑇ത𝐵 = 460 𝐾, respectively. The values 

of the heat release rate parameters are set as 𝜏0 = 5 × 10−3𝑠, 𝜏2 = 4.4 × 10−3𝑠, 𝑔0 = 1.4, 𝑔1 =
0.3.  Figure 2 exhibited the stability map for Rijke tube for different values of heat source position. 

The black regions show the unstable region and white ones are related to stable regions.  

 

 
Figure 2: Stability map for Rijke tube with temperature jump, black regions are unstable and white 

regions are stable. 

 

   We selected a specific point (𝑥𝑞 = 0.4,
𝐴

𝑈ഥ
= 0.01) in the upstream part of the Rijke tube. As Fig-

ure 3a indicates, the behavior of this point is unstable, and we observe a growth in amplitude, lead-

ing to a limit cycle. This Figure 3a has been calculated by solving Equation (17) with an iteration 

stepping forward in time. It should be noted that this time history is for the noiseless case, i.e. the 
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noise term is zero (𝐹𝑛(𝑡) = 0).  In order to prove our assumption in section 4 that the acoustic field 

can be written as in Equation (18), we need to find the complex heat-driven frequencies Ω𝑚 and 

heat-driven amplitudes 𝑢𝑚 for the noiseless case (see Equations (19) and (20)). For this purpose, we 

chose two time intervals: one during the transient stage and the other one during the limit cycle 

stage. As Figure 3b and Figure 3c show, there is good agreement of the results from the time-

domain calculation with those from the frequency-domain calculation. We conclude that both calcu-

lations provide reliable predictions of the behavior of the thermoacoustic system. 

 

  
a) 

 

 
b) 

 

 

c) 

 

 

Figure 3: a) Time evolution in noiseless case using the time domain data. b) Comparison the results 

for the acoustic field in the time domain (blue curve) and frequency domain (red curve) during the 

transient stage c) Comparison of the results for the acoustic field in the time domain (blue curve) 

and frequency domain (red curve) during the limit cycle stage 

 

   The effect of noise on the time history of a thermoacoustic system has been reported in [9]. Now, 

we compare the effects of the white and pink noise on the stability behavior of the system. Figure 4 

shows the time history for a point in the downstream part of a Rijke tube. The behavior of system in 

the noiseless case (blue curve) is stable, since we have a decay in amplitude to reach to zero. In 

each step, we added white and pink noise to our system. As we increase the level of noise (𝛽) in 

Figure 4a, Figure 4b and Figure 4c the behavior of system does not change, but when 𝛽 = 6 the 

pink noise triggers the instability and makes the system unstable. However, for the white noise, it is 
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still stable. Basically, the presence of noise can trigger a thermoacoustic instability. The pink noise 

is a more effective trigger than the white noise.  

 

 

a) 

 

b) 

 

c) 

 

d) 

 

Figure 4: Time evolution of the acoustic field in a Rijke tube for a stable point in presence of white 

and pink noise a)Time histories for noiseless case, in presence of white noise and pink noise for 

𝛽 = 1 b) Time histories for noiseless case, in presence of white noise and pink noise for 𝛽 = 2 c) 

Time histories for noiseless case, in presence of white noise and pink noise for 𝛽 = 4 d) Time 

histories for noiseless case, in presence of white noise and pink noise for 𝛽 = 6. 

 

   We now consider the unstable point (𝑥𝑞 = 1.5,
𝐴

𝑈ഥ
= 0.01), and investigate the effect of both types 

of noise. Figure 5 shows time history; its amplitude increases initially, and eventually a limit cycle 

is reached. In the absence of noise, the system behaves as shown by the blue curve. If noise is in-

cluded, the limit cycle is reached faster. In other words, as we increase the noise intensity the tran-

sient time to a limit cycle will decrease; this effect is more pronounced for pink noise than for white 

noise.  
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a) b) 

 

c) 

 
d) 

 

Figure 5: Time evolution of a Rijke tube for an unstable point in presence of white and pink noise 

Time histories for noiseless case, in presence of white noise and pink noise for 𝛽 = 1 b) Time 

histories for noiseless case, in presence of white noise and pink noise for 𝛽 = 2 c) Time histories 

for noiseless case, in presence of white noise and pink noise for 𝛽 = 4 d) Time histories for 

noiseless case, in presence of white noise and pink noise for 𝛽 = 6. 
 

   One of the nonlinear phenomena that occur in thermoacoustic systems are hysteresis effects. Big-

ongiari and Heckl [3], observed such behaviors in stability maps obtained by using a Green’s func-

tion approach without noise. They varied a control parameter in the forward and backward direction 

and observed subcritical or supercritical Hopf bifurcations. We observed above that the presence of 

noise in thermoacoustic systems can trigger an instability and that the system becomes increasingly 

unstable as the strength of the noise increases. We therefore expect that noise will also affect the 

hysteresis zone by changing the subcritical Hopf bifurcation point. 

In order to investigate the effect of noise on the hysteresis zone, we considered a quarter wave reso-

nator (𝑅0 = 1, 𝑅𝐿 = −1). We use the heater power K as bifurcation parameter, and start from an 

arbitrary value𝐾1. In each step, we increased the heater power (𝐾2 = 𝐾1 + Δ𝐾). At a certain value 

of K, we have an abrupt transition to high-amplitude oscillations. There is a subcritical Hopf bifur-

cation for our system at around K=1.1 (Figure 6, green curve). Then, we take the backward path and 

decrease the value of the heater power. In contrast to the forward path, we don’t observe any sudden 

transition and the oscillation continues with a high amplitude (Figure 6, red curve). Hence, a hyste-

resis zone is observed. In the next step, we added noise and increased the noise intensity. As the 
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noise intensity increases, the system becomes unstable, and triggering occurs at a lower K value 

than without noise. In other words, the position of bifurcation point moves to the left when noise is 

present. This effect becomes more pronounced as the noise intensity increases. Consequently, the 

width of the hysteresis region decreases as we increase the noise level.  
 

 
 

Figure 6: Hysteresis effect in presence of external noise for a quarter wave resonator, the heat 

source position is 𝑥𝑞= 0.1 

 

6. Conclusion 
 

   In the present work, we performed an analytical investigation based on the Green’s function ap-

proach to capture nonlinear dynamical phenomena in thermoacoustic systems in the presence of 

noise. One of the advantages of using a Green’s function approach is its flexibility to apply in both 

time and frequency domains. Therefore, we obtain a time evolution (time-domain) and stability map 

(frequency domain) for a thermoacoustic system using our Green’s function approach. We success-

fully validated these two different approaches.  

   In our study we extended our calculations by including external noise and compared the effects of 

pink noise and white noise. We found that pink noise has a stronger influence on the system. We 

considered a Rijke tube and showed that the transition time to reach the limit cycle decreases as the 

noise intensity increases. The transition time for pink noise is shorter than that for white noise with 

the same noise intensity. Moreover, we found that pink noise is more effective than white noise as 

trigger of a thermoacoustic instability. Furthermore, our study investigated the hysteresis effects in 

thermoacoustic systems with noise. To this end, we applied external noise to a quarter wave resona-

tor and established that noise is an important parameter in that it decreases the width of the hystere-

sis region. This is because of triggering. Hence, increasing the noise level decreases the width of the 

bistable zone. 
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