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Mitigating undesired oscillations is a crucial task in dynamical systems. In this study, we investigat-

ed the occurrence of amplitude death (AD) phenomena analytically using a Green's function 

approach of two coupled Rijke tubes. AD depends on the effective coupling parameters, namely the 

time-delay and strength of the coupling that can be controlled by the length and diameter of the 

connecting tube, respectively. We determined the optimal settings of coupling parameters to 

achieve AD. If the coupling is strong enough, AD is achieved. Furthermore, the coupling position 

and the amplitude of the limit cycle in the uncoupled state also play a role in characterizing the AD 

region. For higher amplitudes, a greater strength of coupling is required at a particular time delay. 

Keywords: Thermoacoustic instabilities, Green’s function approach, Coupled Rijke tubes 

1. Introduction

Thermoacoustic instabilities are unwanted self-sustaining oscillations caused by the feedback be-

tween heat and sound in a confined tube. It is crucial to control these high-amplitude oscillations to 

prevent structural damage and failures in combustion systems. Passive control mechanisms such as 

acoustic dampers, mufflers, baffles, and liners have been utilized to suppress high-amplitude oscilla-

tions. However, passive techniques have certain limitations due to operating conditions. Additionally, 

active control techniques are costly and challenging to install. Therefore, implementing a hybrid mech-

anism, such as coupling thermoacoustic systems, is useful. 

This study investigates thermoacoustic coupling systems that lead to amplitude decrease or complete 

amplitude death. Although the amplitude death (AD) phenomenon due to coupled systems is rich in 

many fields of science, it is rare in thermoacoustic systems. Biwa et al. [1] experimentally studied cou-

pled thermoacoustic engines to achieve amplitude death. Thomas et al. [2] used an analytical (Galerkin) 

approach to investigate coupled thermoacoustic systems. Based on coupling schemes and coupling pa-

rameters, they introduced particular combinations of the coupling parameters to provide amplitude 

death in each oscillator. A Green’s function approach has been used widely to model individual 

thermoacoustic systems [3][4]. Here, we extend analytical investigations of thermoacoustic systems 

based on Green’s function to coupled thermoacoustic systems. 
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2. Mathematical model for coupled thermoacoustic systems 

In this section, we present the equations in terms of Green's function approach (Section 2.1) in the 

presence of the heat source (Section 2.2) and time-delay coupling (Section 2.3). We consider two indi-

vidual one-dimensional Rijke tubes, coupled by a connecting tube, to model coupled thermoacoustic 

systems. 

2.1 Modelling the resonator by Green’s function approach 

The tailored Green's function approach provides an integral governing equation for the acoustic field 

in thermoacoustic systems with source terms. It is a flexible, fast, and robust approach that provides 

time and frequency-domain responses. The nonlinear stability analysis of an individual thermoacoustic 

system has been discussed in previous studies [5]. In this study, we develop a mathematical model us-

ing the Green's function approach to model two coupled Rijke tubes. 

To accomplish this, we consider two Rijke tubes, labeled (a) and (b), each with a compact flame lo-

cated at  𝑥𝑞
𝑎 and 𝑥𝑞

𝑏, respectively (see Figure 1). There are various types of coupling. However, for this 

study, we assume a linear time-delay coupling scheme. This coupling is created by a connecting tube 

between positions 𝑥𝑐
𝑎 in tube (a) and 𝑥𝑐

𝑏 in tube (b). 

 

Figure 1: Illustration of the two coupled Rijke tubes (a and b) with lengths 𝐿𝑎 and 𝐿𝑏. The connecting tube is 

attached to both tubes at 𝑥𝑐
𝑎 and 𝑥𝑐

𝑏. The length of the connecting tube is 𝑙𝑐. 

 

The tailored Green’s function is the acoustic field in the resonator created by a point source at 𝑥′ and 

time 𝑡′, observed at 𝑥 and time t. The governing equation is, 

1

𝑐2

𝜕2𝐺

𝜕𝑡2
−

𝜕2𝐺

𝜕𝑥2
= 𝛿(𝑥 − 𝑥′)𝛿(𝑡 − 𝑡′). (1) 

For an individual Rijke tube (open ends) and temperature jump at 𝑥𝑞
𝑎 or 𝑥𝑞

𝑏, the tailored Green’s 

function is a superposition of modes as below, 

𝐺(𝑥, 𝑥′, 𝑡, 𝑡′) = 𝐻(𝑡 − 𝑡′)𝑅𝑒 ∑ 𝑔𝑛(𝑥, 𝑥′)𝑒−𝑖𝜔𝑛(𝑡−𝑡′)

𝑁

𝑛=1

. (2) 

In Eq. (2), 𝑔𝑛 and 𝜔𝑛 are amplitude and frequency of mode n for each tube, respectively. The Heavi-

side function 𝐻(𝑡 − 𝑡′) in this equation shows that Green’s function satisfies the causality. Due to the 

geometry of the resonator the frequency of mode n is determined by an eigenvalue problem, which 

leads to the characteristic equation 𝐹(𝜔) = 0, where, 
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𝐹(𝜔) = 𝑒−𝑖𝑘1𝑥𝑞𝑒−𝑖𝑘2(𝐿−𝑥𝑞) − 𝑅𝐿𝑅21𝑒−𝑖𝑘1𝑥𝑞𝑒𝑖𝑘2(𝐿−𝑥𝑞) − 𝑅0𝑅12𝑒𝑖𝑘1𝑥𝑞𝑒−𝑖𝑘2(𝐿−𝑥𝑞)

− 𝑅0𝑅𝐿𝑒𝑖𝑘1𝑥𝑞𝑒𝑖𝑘2(𝐿−𝑥𝑞). 

(3) 

In Eq. (3), 𝑘1 and 𝑘2 are wave numbers in the cold and hot region of the Rijke tube with speed of 

sounds 𝑐1 and 𝑐2. The reflection coefficients of the pressure field at both ends are 𝑅0 and 𝑅𝐿. Further-

more, the reflection and transmission coefficients across the temperature jump interface for the right-

running waves and left-running waves are 𝑅12, 𝑇12 and 𝑅21, 𝑇21, respectively.    

The Green’s function amplitude 𝑔𝑛 of mode n depends on the observer and source position, and it 

can be calculated analytically [6]. The result is, 

𝑔𝑛(𝑥, 𝑥′) =
𝑐2𝑔̂(𝑥, 𝑥′, 𝜔)

𝜔𝑛 𝐹′(𝜔𝑛)
, (4) 

where 

𝑔̂(𝑥, 𝑥′, 𝜔) = {

𝐴(𝑥, 𝜔) 𝐵(𝑥′, 𝜔)

𝐵(𝑥′, 𝜔) 𝐶(𝑥, 𝜔)

𝐶(𝑥′, 𝜔) 𝐵(𝑥, 𝜔)
                 

0 < 𝑥 < 𝑥𝑞
𝑎,𝑏

𝑥𝑞
𝑎,𝑏 < 𝑥 < 𝑥′𝑎,𝑏

𝑥′𝑎,𝑏
< 𝑥 < 𝐿𝑎,𝑏,

 
(5) 

and 

𝐴(𝑥, 𝜔) = 𝑇21(𝑅0𝑒𝑖𝑘1𝑥 + 𝑒−𝑖𝑘1𝑥), (6) 

𝐵(𝑥, 𝜔) = 𝑅𝐿𝑒𝑖𝑘2(𝐿−𝑥) + 𝑒−𝑖𝑘2(𝐿−𝑥), (7) 

𝐶(𝑥, 𝜔) = 𝑒𝑖𝑘2(𝑥−𝑥𝑞)(𝑅21𝑒−𝑖𝑘1𝑥𝑞 + 𝑅0𝑒𝑖𝑘1𝑥𝑞) + 𝑒−𝑖𝑘2(𝑥−𝑥𝑞)(𝑒−𝑖𝑘1𝑥𝑞 − 𝑅0𝑅12𝑒𝑖𝑘1𝑥𝑞). (8) 

The two Rijke tubes (a) and (b) may be identical or non-identical. If they are non-identical, i.e., 

𝐿𝑎 ≠ 𝐿𝑏, then their frequencies differ: 𝜔𝑛
𝑎 ≠ 𝜔𝑛

𝑏. We will investigate the coupling effects for identical 

tubes. 

2.2 Model for the heat release rate 

In this paper, the heat source is assumed to be a compact source at 𝑥𝑞
𝑎,𝑏

 and the heat release rate per 

unit mass is modelled by a generalised 𝑛𝜏-model. For tube (a), this is given by,  

 

𝑞𝑎(𝑥, 𝑡) = 𝑞𝑎(𝑡)𝛿(𝑥 − 𝑥𝑞
𝑎), (9) 

where 

𝑞𝑎(𝑡) = 𝐾[𝑛1𝑢𝑞
𝑎(𝑡 − 𝜏) − 𝑛0𝑢𝑞

𝑎(𝑡)]. (10) 

 

equivalent expressions hold for the heat source in tube (b).   

Eq. (10) represents the nonlinear heat release rate model; it is nonlinear in that it depends on the am-

plitude A of the acoustic field in the tube. The amplitude-dependence occurs in the parameters 𝑛1, 𝑛0 

(coupling coefficients) and τ (time-lag) as shown in equations (11) to (13). 𝐾 represents the heat power 

and 𝑢̅ is the mean velocity to normalize the acoustic field of the tube [6]. 

𝑛0 =
1

2
(𝑔0 − 𝑔1

𝐴

𝑢̅
− 1), 

(11) 

𝑛1 =
1

2
(𝑔0 − 𝑔1

𝐴

𝑢̅
+ 1), 

(12) 

𝜏 = 𝜏0 + 𝜏2 (
𝐴

𝑢̅
)

2

. 
(13) 
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2.3 Model for the time-delay coupling 

This study focuses on the impact of time-delay coupling in identical oscillators, where coupled os-

cillators exhibit intriguing dynamical phenomena [7][8][9]. The connecting tube transmits sound be-

tween the two Rijke tubes with an infinite time-delay. We model each end of the connecting tube as a 

monopole sound source, with volume flow, 

 

𝑄𝑐
𝑎(𝑥, 𝑡) = 𝑄𝑐

𝑎(𝑡)𝛿(𝑥 − 𝑥𝑐
𝑎), (14) 

𝑄𝑐
𝑎(𝑡) = 𝛼(𝑝𝑐

𝑏(𝑡 − 𝜏𝑐) − 𝑝𝑐
𝑎(𝑡)), (15) 

𝑄𝑐
𝑏(𝑥, 𝑡) = 𝑄𝑏(𝑡)𝛿(𝑥 − 𝑥𝑐

𝑏), (16) 

𝑄𝑐
𝑏(𝑡) = 𝛼(𝑝𝑐

𝑎(𝑡 − 𝜏𝑐) − 𝑝𝑐
𝑏(𝑡)). 

 

(17) 

𝜏𝑐 is the finite time it takes for the pressure field to travel inside the connecting tube and 𝛼 is the 

strength of the time-delay coupling. These parameters can be varied in a practical situation: increasing 

the length of the connecting tube increases 𝜏𝑐, while increasing the diameter of the connecting tube 

increases α.  

2.4 The integral governing equation by a flame and time-delay coupling 

One of the advantages of using the Green’s function approach is the ability to convert a partial dif-

ferential equation into an integral governing equation. This type of equation allows for a better under-

standing of the physical behaviour of acoustic waves in real-life scenarios, making it a more reliable 

and robust approach. In section (2.4.1), we demonstrate the derivation of the integral governing equa-

tion in terms of the velocity potential, considering the presence of a flame and time-delay coupling as 

two sources. In section (2.4.2), we utilize a numerical iteration scheme to solve the integral governing 

equation. 

2.4.1 Derivation 

Using the set up shown in Figure 1, and considering two sources within the tube, the non-

homogenous acoustic analogy equation in terms of the velocity potential becomes, 

1

𝑐2
 
𝜕2𝜙𝑎,𝑏

𝜕𝑡2
−  

𝜕2𝜙𝑎,𝑏

𝜕𝑥2
= −

𝛾 − 1

𝑐2
𝑞𝑎,𝑏(𝑥, 𝑡) + 𝑄𝑐

𝑎,𝑏(𝑥, 𝑡). (18) 

The heat release rate term has been determined in section (2.2), and the coupling term is shown in 

section (2.3). It is assumed that both forcing terms are compact at the heat source and coupling posi-

tions, respectively. The initial conditions are described at heat source position as below, 

 

𝜙𝑎,𝑏(𝑥, 0) = 𝜑0
𝑎,𝑏𝛿(𝑥 − 𝑥𝑞),

𝜕𝜙𝑎,𝑏(𝑥, 0)

𝜕𝑡
= 𝜑0

′ 𝑎,𝑏
𝛿(𝑥 − 𝑥𝑞). (19) 

After many mathematical manipulations (for details, see [5]), by combining Eq. (1) and Eq. (18), the 

integral governing equation becomes,  

𝜙𝑎,𝑏(𝑥, 𝑡) = ∫ ∫ 𝐺𝑎,𝑏(𝑥, 𝑥′, 𝑡, 𝑡′) 𝑞𝑎,𝑏(𝑥, 𝑡) 𝑑𝑥′𝑑𝑡′

𝐿

𝑥′=0

+ ∫ ∫ 𝐺𝑎,𝑏(𝑥, 𝑥′, 𝑡, 𝑡′) 𝑄𝑐
𝑎,𝑏(𝑥, 𝑡) 𝑑𝑥′𝑑𝑡′

𝐿

𝑥′=0

𝑡

𝑡′=0

𝑡

𝑡′=0

+
1

𝑐2
 ∫ ∫ [𝜙𝑎,𝑏  

𝜕2𝐺𝑎,𝑏

𝜕𝑡′2 − 𝐺𝑎,𝑏  
𝜕2𝜙𝑎,𝑏

𝜕𝑡′2 ] 𝑑𝑥′ 𝑑𝑡′

𝐿

𝑥′=0

𝑡

𝑡′=0

. 

 

(20) 



 

 

ICSV29, Annual Congress of International Institute of Acoustics and Vibration (IIAV), 9 – 13 July 2023 5 

By evaluating the sources at the heat source position and coupling position and differentiating with 

respect to 𝑥, Eq. (20) leads to, 

𝑢𝑎,𝑏(𝑥, 𝑡) =
𝜕𝜙𝑎,𝑏

𝜕𝑥

= ∫
𝜕𝐺𝑎,𝑏(𝑥, 𝑥𝑞 , 𝑡, 𝑡′)

𝜕𝑥
 𝑞𝑎,𝑏(𝑡′)𝑑𝑡′

𝑡

𝑡′=0

+ ∫
𝜕𝐺𝑎,𝑏(𝑥, 𝑥𝑐 , 𝑡, 𝑡′)

𝜕𝑥
 𝑄𝑐

𝑎,𝑏(𝑡′)𝑑𝑡′                              

𝑡

𝑡′=0

−
𝜑0

𝑎,𝑏

𝑐2
 
𝜕2𝐺𝑎,𝑏(𝑥, 𝑥𝑞 , 𝑡, 𝑡′)

𝜕𝑥𝜕𝑡′
|𝑡′=0  +

𝜑0
′ 𝑎,𝑏

𝑐2
 
𝜕𝐺𝑎,𝑏(𝑥, 𝑥𝑞 , 𝑡, 𝑡′)

𝜕𝑥
|𝑡′=0. 

(21) 

2.4.2 Numerical iteration method 

In this section, we provide a numerical iteration method to solve Eq. (21) in a straightforward way. 

To this end, we expand the x-derivative of Green’s function given in section (2.1). Hence, we define 

two integrals (Eq. (22) and Eq. (23)) to calculate the time evolution of mode n. 

𝐼𝑛
𝑞𝑎,𝑏

(𝑡) = ∫ 𝑒𝑖𝜔𝑛
𝑎,𝑏𝑡′

 𝑞𝑎,𝑏(𝑡′) 𝑑𝑡′

𝑡

𝑡′=0

, (22) 

𝐼𝑛
𝑄𝑎,𝑏

(𝑡) = ∫ 𝑒𝑖𝜔𝑛
𝑎,𝑏𝑡′

𝑄𝑎,𝑏(𝑡′) 𝑑𝑡′

𝑡

𝑡′=0

. (23) 

By splitting the time interval into two parts and some mathematical procedures (for more details, see 

[5]), the resulting equations are, 

𝐼𝑛
𝑞𝑎,𝑏

(𝑡) = 𝐼𝑛
𝑞𝑎,𝑏

(𝑡 − Δ𝑡) + 𝑞𝑎,𝑏(𝑡 − Δ𝑡)
1 − 𝑒𝑖𝜔𝑛

𝑎,𝑏Δ𝑡

𝑖𝜔𝑛
𝑎,𝑏  𝑒𝑖𝜔𝑛

𝑎,𝑏𝑡 , (24) 

𝐼𝑛
𝑄𝑎,𝑏

(𝑡) = 𝐼𝑛
𝑄𝑎,𝑏

(𝑡 − Δ𝑡) + 𝑄𝑐
𝑎,𝑏(𝑡 − Δ𝑡)

1 − 𝑒𝑖𝜔𝑛
𝑎,𝑏Δ𝑡

𝑖𝜔𝑛
𝑎,𝑏  𝑒𝑖𝜔𝑛

𝑎,𝑏𝑡. (25) 

Substituting Eq. (22) and Eq. (23) into Eq. (21), leads to,  

𝑢𝑎,𝑏(𝑥, 𝑡) = −
𝛾 − 1

𝑐2
 𝑅𝑒 ∑ 𝐺𝑛

𝑎,𝑏𝐼𝑛
𝑞𝑎,𝑏

(𝑡)

𝑁

𝑛=1

+ 𝑅𝑒 ∑ 𝐺𝑛
𝑎,𝑏𝐼𝑛

𝑄𝑎,𝑏
(𝑡) − 𝑅𝑒 ∑

1

𝑐2
 (𝑖𝜔𝑛

𝑎,𝑏𝜑0
𝑎,𝑏 + 𝜑0

′ 𝑎,𝑏
) 𝐺𝑛

𝑎,𝑏 𝑒−𝑖𝜔𝑛
𝑎,𝑏𝑡

𝑁

𝑛=1

𝑁

𝑛=1 

, 

(26) 

where 𝐺𝑛
𝑎,𝑏

 is the derivation of Green’s function amplitude of mode n with respect to 𝑥. 

3. Results and Discussions 

In this section, we construct two-parameter bifurcation diagrams to analyse the influence of time-

delay coupling on limit cycle amplitudes. We consider two identical Rijke tubes, although it is rare to 

have identical combustors in practical situations. Since this study is the primary investigation of cou-

pled thermoacoustic systems using a Green's function approach, we begin with a simple model. In the 

non-identical case, the difference in lengths of the Rijke tubes leads to a difference in frequencies. The 
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relationship between frequency detuning and different schemes of couplings is the focus of further 

studies. 

3.1 Effect of time-delay coupling in identical tubes 

To illustrate the effects of time-delay coupling on two identical Rijke tubes, we varied the coupling 

parameters (𝜏𝑐, 𝛼) in coupling term presented in Section (2.3). The heat source positions are located at 

𝑥𝑞
𝑎,𝑏 = 0.4 𝑚 in both tubes, while the coupling positions are at 𝑥𝑐

𝑎,𝑏 = 0.7 𝑚. The length of both tubes is 

𝐿𝑎,𝑏 = 2 𝑚. Figure 2a shows the acoustic field in Rijke tube (a) when the coupling parameters are set to 

𝛼 = 0.003 and 𝜏𝑐 = 0.012. In this case, the coupling effect is not strong enough to quench the amplitude 

of the limit cycle, but a suppression in amplitude is observed. However, further increasing the strength 

of the coupling to 𝛼 = 0.008, as shown in Figure 3b, leads to the full mitigation of limit cycle amplitude 

and AD is achieved. 

 

  
Figure 2: Time evaluation of Rijke tube (a) with coupling. a) Coupling parameters are 𝛼 = 0.003 and 𝜏𝑐 =

0.012 and the coupling is on at t = 1.2s. b) Coupling parameters are 𝛼 = 0.008 and 𝜏𝑐 = 0.012 and the cou-

pling is on at t = 1.2s. 

 

Hence, varying the coupling parameters can effectively change the oscillation state of a Rijke tube. 

Figure. 3, exhibits a two-parameter bifurcation diagram. It is illustrating the amplitude suppression of 

the limit cycle as 𝛼 and 𝜏𝑐 are varied. The black region is related to the AD region, where a sufficient 

combination of the time-delay coupling can decrease the amplitude of the limit cycle to zero. Further-

more, the white region does not fully suppress the amplitude, but it is still possible to decrease the am-

plitude in this region.  

 
Figure 3: Two-parameter bifurcation diagram for 𝜏𝑐 , 𝛼 and acoustic field amplitude. The black region is related 

to where AD is achieved. Heat source position is 𝑥𝑞
𝑎,𝑏 = 0.4𝑚 and coupling position is 𝑥𝑐

𝑎,𝑏 = 0.7𝑚. Heater 

power is 𝐾𝑎,𝑏 = 3 × 105𝑊. 𝑠. 𝑘𝑔−1 
 

a) b) 
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     In the next step, we moved the coupling position further away from the heat source position, setting 

it to 𝑥𝑐
𝑎,𝑏 = 1.6 𝑚. Figure 4 shows the two-parameter bifurcation diagram for this case. As the coupling 

position moves towards the end of the tube, the heat source related to the coupling becomes more effec-

tive at quenching the amplitude of the limit cycle. In other words, achieving the AD requires smaller 

values for the strength of coupling. Moreover, time-delays of AD region are decreasing, which means 

the length of the connecting tube can be shorter. By increasing the distance between heat source posi-

tion and coupling position, the coupling source acts as a sink, removing energy from the system and 

reducing the amplitude of the oscillations. 

 
Figure 4: Two-parameter bifurcation diagram for 𝜏𝑐 , 𝛼 and acoustic field amplitude. The black region is shown 

where AD is achieved. Heat source position is 𝑥𝑞
𝑎,𝑏 = 0.4𝑚 and coupling position is 𝑥𝑐

𝑎,𝑏 = 1.6𝑚. Heater power 

is 𝐾𝑎,𝑏 = 3 × 105𝑊. 𝑠. 𝑘𝑔−1 

3.2 Effect of amplitude of limit cycle on AD region 

To ensure that the sets of coupling parameters are sufficient to reach AD for different amplitudes of 

the limit cycle, we varied the heater power. Increasing the heater power leads to an increase in the limit 

cycle amplitude. In this section, we increased the heater power in both Rijke tubes similarly. The heater 

powers of both Rijke tubes (a and b) are set to 𝐾𝑎,𝑏 = 3 × 105𝑊. 𝑠. 𝑘𝑔−1 (Figure 5a). Increasing the 

heater power of both Rijke tubes to 𝐾𝑎,𝑏 = 4 × 105𝑊. 𝑠. 𝑘𝑔−1 (Figure 5b) and 𝐾𝑎,𝑏 = 5 × 105𝑊. 𝑠. 𝑘𝑔−1 

(Figure 5c) shrinks the AD region. Figure 5 indicates that for higher heater power and consequently, 

higher limit cycle amplitude, stronger coupling is required. The plots show a moving up in AD region, 

that means, for a certain time-delay, it requires higher strength of coupling. In addition, the time delay 

range in AD region decreases as the amplitude of limit cycle increases.  

 

   

Figure 5: Two-parameter bifurcation diagrams for 𝜏𝑐 , 𝛼 and acoustic field amplitude. a) heater power is 𝐾𝑎,𝑏 =
3 × 105𝑊. 𝑠. 𝑘𝑔−1. b) heater power is 𝐾𝑎,𝑏 = 4 × 105𝑊. 𝑠. 𝑘𝑔−1. c) heater power is 𝐾𝑎,𝑏 = 5 × 105𝑊. 𝑠. 𝑘𝑔−1. 

 

 

a) b) c) 



 

 

ICSV29, Annual Congress of International Institute of Acoustics and Vibration (IIAV), 9 - 13 July 2023 

4. Conclusion 

In this paper, we utilized a Green's function approach to simulate the behaviour of two interconnect-

ed Rijke tubes. The coupling between the tubes was achieved through a connecting tube, whose length 

and diameter could be adjusted based on the system's characteristics in the absence of coupling. Two 

coupling parameters were introduced to capture the time-delay coupling effect. By varying these pa-

rameters, we generated a bifurcation diagram that identified the ranges of coupling parameters neces-

sary to induce an amplitude death (AD) in the system. Moreover, changing the coupling position shift-

ed the AD region to a smaller time-delay range with weaker coupling strength. In addition to the con-

necting tube properties and position, the Rijke tube's limit cycle amplitude in the absence of coupling 

was also found to be a significant factor in selecting the coupling parameters. Specifically, in a high-

amplitude limit cycle oscillation, stronger coupling was required. Lastly, we observed that the width of 

the time-delay coupling decreased with increasing heater power. 
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